Molecules of hadrons bound by pion exchange: application to LHCb pentaquarks

Tim Burns

Swansea University

8 November 2017
[T.B., Eur.Phys.J. A51, 152 (2015), 1509.02460] [T.B. \& E.Swanson (ongoing)]
$P_{c}(4380)$ and $P_{c}(4450)$

	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
Width	$205 \pm 18 \pm 86$	$35 \pm 5 \pm 19$
Assignment 1	$3 / 2^{-}$	$5 / 2^{+}$
Assignment 2	$3 / 2^{+}$	$5 / 2^{-}$
Assignment 3	$5 / 2^{+}$	$3 / 2^{-}$

$P_{c}(4380)$ and $P_{c}(4450)$

$$
P_{c}(4380)^{+} \quad P_{c}(4450)^{+}
$$

Mass	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
Width	$205 \pm 18 \pm 86$	$35 \pm 5 \pm 19$
Assignment 1	$3 / 2^{-}$	$5 / 2^{+}$
Assignment 2	$3 / 2^{+}$	$5 / 2^{-}$
Assignment 3	$5 / 2^{+}$	$3 / 2^{-}$

$\sum_{c}^{*+} \bar{D}^{0}$	$(u d c)(u \bar{c})$
$\sum_{c}^{+} \bar{D}^{* 0}$	$(u d c)(u \bar{c})$
$\Lambda_{c}^{+}(1 P) \bar{D}^{0}$	$(u d c)(u \bar{c})$
$\chi_{c 1} p$	$(u d u)(c \bar{c})$

4459.9 ± 0.5
4457.09 ± 0.35
4448.93 ± 0.07
$P_{c}(4380)$ and $P_{c}(4450)$

$$
P_{c}(4380)^{+} \quad P_{c}(4450)^{+}
$$

Mass	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
Width	$205 \pm 18 \pm 86$	$35 \pm 5 \pm 19$
Assignment 1	$3 / 2^{-}$	$5 / 2^{+}$
Assignment 2	$3 / 2^{+}$	$5 / 2^{-}$
Assignment 3	$5 / 2^{+}$	$3 / 2^{-}$

$\sum_{c}^{*+} \bar{D}^{0}$	$(u d c)(u \bar{c})$	4382.3 ± 2.4
$\sum_{c}^{+} \bar{D}^{* 0}$	$(u d c)(u \bar{c})$	
$\Lambda_{c}^{+}(1 P) \bar{D}^{0}$	$(u d c)(u \bar{c})$	4459.9 ± 0.5
$\chi_{c 1} p$	$(u d u)(c \bar{c})$	4457.09 ± 0.35
		4448.93 ± 0.07

Hidden-charm molecules

- Yang, Sun, He, Liu, Zhu (2011)
- Wu, Molina, Oset, Zou, Xiao, Nieves, Uchino, Liang, Roca, Magas, Feijoo, Ramos, ... (2010-2016)
- Karliner, Rosner (2015)
- He (2015)
- Shimizu, Suenaga, Harada (2016)
- Chen, Liu, Li, Zhu (2015)
- Yamaguchi, Santopinto (2016)
- Huang, Deng, Ping, Wang (2015)
- Yang, Ping (2015)
- Ortega, Entem, Fernandez (2016)

One-pion exchange potential

Potential mixes particles and angular momenta, e.g.

- $\Lambda_{c} \bar{D}\left({ }^{2} S_{1 / 2}\right) \rightarrow \Sigma_{c} \bar{D}^{*}\left({ }^{4} D_{1 / 2}\right)$
but the pattern is driven by diagonal blocks of fixed particles.
Note
- $\Lambda_{c} \Lambda_{c} \pi$ vertex is forbidden (isospin)
- $\bar{D} \bar{D} \pi$ vertex is forbidden (spin-parity)

One-pion exchange potential

Potential mixes particles and angular momenta, e.g.

- $\Lambda_{c} \bar{D}\left({ }^{2} S_{1 / 2}\right) \rightarrow \Sigma_{c} \bar{D}^{*}\left({ }^{4} D_{1 / 2}\right)$
but the pattern is driven by diagonal blocks of fixed particles.
Note
- $\Lambda_{c} \Lambda_{c} \pi$ vertex is forbidden (isospin)
- $\bar{D} \bar{D} \pi$ vertex is forbidden (spin-parity)

One-pion exchange potential

Quark models and heavy-quark chiral Lagrangians give

$$
V(\vec{r})=\left[V_{C}(r) \vec{\Sigma}_{1} \cdot \vec{\Sigma}_{2}+V_{T}(r) S_{12}(\hat{r})\right] \vec{T}_{1} \cdot \vec{T}_{2}
$$

One-pion exchange potential

Quark models and heavy-quark chiral Lagrangians give

$$
V(\vec{r})=\left[V_{C}(r) \vec{\Sigma}_{1} \cdot \vec{\Sigma}_{2}+V_{T}(r) S_{12}(\hat{r})\right] \vec{T}_{1} \cdot \vec{T}_{2}
$$

Coefficents are model-independent; e.g. $\Sigma_{c} \bar{D}^{*}$ in $1 / 2\left(3 / 2^{-}\right)$:

$$
\begin{array}{llll}
& \left.\left.\right|^{4} S_{3 / 2}\right\rangle & \left.\left.\right|^{2} D_{3 / 2}\right\rangle & \left.\left.\right|^{4} D_{3 / 2}\right\rangle \\
\left\langle^{4} S_{3 / 2}\right| & -\frac{8}{3} V_{C} & -\frac{8}{3} V_{T} & -\frac{16}{3} V_{T} \\
\left\langle^{2} D_{3 / 2}\right. & -\frac{8}{3} V_{T} & +\frac{16}{3} V_{C} & +\frac{8}{3} V_{T} \\
\left\langle^{4} D_{3 / 2}\right| & -\frac{16}{3} V_{T} & +\frac{8}{3} V_{T} & -\frac{8}{3} V_{C}
\end{array}
$$

and relative strengths fixed by HQ symmetry.

One-pion exchange potential

Quark models and heavy-quark chiral Lagrangians give

$$
V(\vec{r})=\left[V_{C}(r) \vec{\Sigma}_{1} \cdot \vec{\Sigma}_{2}+V_{T}(r) S_{12}(\hat{r})\right]{\overrightarrow{T_{1}}}_{1} \cdot \vec{T}_{2}
$$

Coefficents are model-independent; e.g. $\Sigma_{c} \bar{D}^{*}$ in $1 / 2\left(3 / 2^{-}\right)$:

$$
\begin{array}{llll}
& \left.\left.\right|^{4} S_{3 / 2}\right\rangle & \left.\left.\right|^{2} D_{3 / 2}\right\rangle & \left.\left.\right|^{4} D_{3 / 2}\right\rangle \\
\left\langle^{4} S_{3 / 2}\right| & -\frac{8}{3} V_{C} & -\frac{8}{3} V_{T} & -\frac{16}{3} V_{T} \\
\left\langle^{2} D_{3 / 2}\right. & -\frac{8}{3} V_{T} & +\frac{16}{3} V_{C} & +\frac{8}{3} V_{T} \\
\left\langle^{4} D_{3 / 2}\right| & -\frac{16}{3} V_{T} & +\frac{8}{3} V_{T} & -\frac{8}{3} V_{C}
\end{array}
$$

and relative strengths fixed by HQ symmetry.
Central and tensor potentials with form factor cutoff

One-pion exchange potential

Quark models and heavy-quark chiral Lagrangians give

$$
V(\vec{r})=\left[V_{C}(r) \vec{\Sigma}_{1} \cdot \vec{\Sigma}_{2}+V_{T}(r) S_{12}(\hat{r})\right] \vec{T}_{1} \cdot \vec{T}_{2}
$$

Coefficents are model-independent; e.g. $\Sigma_{c} \bar{D}^{*}$ in $1 / 2\left(3 / 2^{-}\right)$:

$$
\begin{array}{lccc}
& \left|{ }^{4} S_{3 / 2}\right\rangle & \left.\left.\right|^{2} D_{3 / 2}\right\rangle & \left|{ }^{4} D_{3 / 2}\right\rangle \\
\left\langle{ }^{4} S_{3 / 2}\right| & -\frac{8}{3} V_{C} & -\frac{8}{3} V_{T} & -\frac{16}{3} V_{T} \\
{ }^{2} D_{3 / 2} \mid & -\frac{8}{3} V_{T} & +\frac{16}{3} V_{C} & +\frac{8}{3} V_{T} \\
\left\langle{ }^{4} D_{3 / 2}\right| & -\frac{16}{3} V_{T} & +\frac{8}{3} V_{T} & -\frac{8}{3} V_{C}
\end{array}
$$

and relative strengths fixed by HQ symmetry.
Central and tensor potentials with form factor cutoff
Larger isospin \Longrightarrow weaker potential; e.g. $V_{I=3 / 2}=-\frac{1}{2} V_{I=1 / 2}$

One-pion exchange potential

Quark models and heavy-quark chiral Lagrangians give

$$
V(\vec{r})=\left[V_{C}(r) \vec{\Sigma}_{1} \cdot \vec{\Sigma}_{2}+V_{T}(r) S_{12}(\hat{r})\right] \vec{T}_{1} \cdot \vec{T}_{2}
$$

Coefficents are model-independent; e.g. $\Sigma_{c} \bar{D}^{*}$ in $1 / 2\left(3 / 2^{-}\right)$:

$$
\begin{array}{llll}
& \left|{ }^{4} S_{3 / 2}\right\rangle & \left.\left.\right|^{2} D_{3 / 2}\right\rangle & \left|{ }^{4} D_{3 / 2}\right\rangle \\
\left\langle{ }^{4} S_{3 / 2}\right| & -\frac{8}{3} V_{C} & -\frac{8}{3} V_{T} & -\frac{16}{3} V_{T} \\
{ }^{2} D_{3 / 2} \mid & -\frac{8}{3} V_{T} & +\frac{16}{3} V_{C} & +\frac{8}{3} V_{T} \\
\left\langle{ }^{4} D_{3 / 2}\right| & -\frac{16}{3} V_{T} & +\frac{8}{3} V_{T} & -\frac{8}{3} V_{C}
\end{array}
$$

and relative strengths fixed by HQ symmetry.
Central and tensor potentials with form factor cutoff
Larger isospin \Longrightarrow weaker potential; e.g. $V_{I=3 / 2}=-\frac{1}{2} V_{l=1 / 2}$
For channels with S-waves, binding is driven by coefficient of $V_{C}(r)$ (and unlike for $N N$, this can be positive....)

$\Lambda=120$	1/2-	3/2-	5/2-
г*D*	+20/3	+8/3	-4
こD*	+16/3	-1.................8/3	
$\Sigma * D$			
$\Sigma \mathrm{D}$			
^D*			
$\wedge \mathrm{D}$			

$\Lambda=150$	1/2-	3/2-	5/2-
г*D*	+20/3		-4
こD*	+16/3	-8/3	-000000000000000000000.0.000
		.0.0.0..........6.6.6.0.6.0.	мпмпимпмпмпимпия.
$\Sigma *$ D			
^D*			
$\wedge \mathrm{D}$			
ND			

Critical form factor

Critical form factor

Conventional wisdom

"Molecules exist close to S-wave thresholds"

Conventional wisdom

"Molecules exist close to S-wave thresholds"

- Only for certain quantum numbers
- "Few" states exist \Leftrightarrow all are "near" threshold
- "Many" states exist \Leftrightarrow some are more deeply bound
- Pattern is driven by coefficient of V_{C}, due to π exchange, and understood in fixed-particle basis. . . but is more general.

Conventional wisdom

"Molecules exist close to S-wave thresholds"

- Only for certain quantum numbers
- "Few" states exist \Leftrightarrow all are "near" threshold
- "Many" states exist \Leftrightarrow some are more deeply bound
- Pattern is driven by coefficient of V_{C}, due to π exchange, and understood in fixed-particle basis. . . but is more general.

P-wave states? (e.g $1 / 2^{+}, 3 / 2^{+}, 5 / 2^{+}$)

- Possible, but with much larger cut-off, implying many more states overall
- Pattern is driven by coefficient of V_{T}.
- States near wrong thresholds for $P_{c}(4380), P_{c}(4450)$.

$\Xi_{c}^{*} \bar{D}^{*}$ molecules

$$
\begin{array}{lll}
\Lambda_{c}=\left((u d)_{0} c\right)_{1 / 2} & \Longrightarrow & \Xi_{c}=\left((u s)_{0} c\right)_{1 / 2} \\
\Sigma_{c}=\left((u d)_{1} c\right)_{1 / 2} & \Longrightarrow & \Xi_{c}^{\prime}=\left((u s)_{1} c\right)_{1 / 2} \\
\Sigma_{c}^{*}=\left((u d)_{1} c\right)_{3 / 2} & \Longrightarrow & \Xi_{c}^{*}=\left((u s)_{1} c\right)_{3 / 2}
\end{array}
$$

The potential matrices (central + tensor) are directly related.
Predict loosely bound $0\left(5 / 2^{-}\right) \Xi_{c}^{*} \bar{D}^{*}$ state, observable in $\Lambda_{b} \rightarrow J / \psi \wedge \eta$, and $\Xi_{b} \rightarrow J / \psi \wedge K^{-}$(LHCb run II).

Isospin mixing: $P_{c}(4380)$ and $P_{c}(4450)$

$$
u u d c \bar{c}=\left\{\begin{array}{l}
(u d c)(u \bar{c})=\Sigma_{c}^{+} \bar{D}^{0} \\
(u u c)(d \bar{c})=\Sigma_{c}^{++} D^{-}
\end{array}\right.
$$

Isospin-conserving interactions give $\left|I, I_{3}\right\rangle$ eigenstates,

$$
\binom{\left|\frac{1}{2}, \frac{1}{2}\right\rangle}{\left|\frac{3}{2}, \frac{1}{2}\right\rangle}=\left(\begin{array}{rr}
-\sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}}
\end{array}\right)\binom{\left|\Sigma_{c}^{+} \bar{D}^{0}\right\rangle}{\left|\Sigma_{c}^{++} D^{-}\right\rangle}
$$

but only if the masses $\Sigma_{c}^{+}=\Sigma_{c}^{++}$and $\bar{D}^{0}=D^{-}$.

Otherwise, isospin is not a good quantum number.

Isospin mixing: $P_{c}(4380)$ and $P_{c}(4450)$

$$
\begin{aligned}
P_{c}(4380) & =4380 \pm 8 \pm 29 & P_{c}(4450) & =4449 \pm 1.7 \pm 2.5 \\
\Sigma_{c}^{*+} \bar{D}^{0} & =4382.3 \pm 2.4 & \Sigma_{c}^{+} \bar{D}^{* 0} & =4459.9 \pm 0.5 \\
\Sigma_{c}^{*++} D^{-} & =4387.5 \pm 0.7 & \Sigma_{c}^{++} D^{*-} & =4464.24 \pm 0.23
\end{aligned}
$$

The P_{c} states have mixed isospin:

$$
\left|P_{c}\right\rangle=\cos \phi\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\sin \phi\left|\frac{3}{2}, \frac{1}{2}\right\rangle
$$

They should decay also into $J / \psi \Delta^{+}$and $\eta_{c} \Delta^{+}$, with weights:

$$
\begin{array}{lll}
J / \psi p: J / \psi \Delta^{+}: \eta_{c} \Delta^{+}=2 \cos ^{2} \phi: 5 \sin ^{2} \phi: 3 \sin ^{2} \phi & {\left[P_{c}(4380)\right]} \\
J / \psi p: J / \psi \Delta^{+}: \eta_{c} \Delta^{+}=\cos ^{2} \phi: 10 \sin ^{2} \phi: 6 \sin ^{2} \phi & {\left[P_{c}(4450)\right]}
\end{array}
$$

Isospin mixing: predicted $5 / 2^{-}$states

$$
\begin{gathered}
\Sigma_{c}^{*} \bar{D}^{*} 1 / 2\left(5 / 2^{-}\right) \\
\Sigma_{c}^{*+} \bar{D}^{* 0}=4524.4 \pm 2.4 \\
\Sigma_{c}^{*++} D^{*-}=4528.2 \pm 0.7
\end{gathered}
$$

Mixed isopsin:
$|P\rangle=\cos \phi\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\sin \phi\left|\frac{3}{2}, \frac{1}{2}\right\rangle$

Decays:
$\rightarrow J / \psi p$: D-wave, spin flip
Reason for absence at LHCb?
$\rightarrow J / \psi \Delta$: S-wave, spin cons.
$\Longrightarrow I=3 / 2$ decay enhanced.

Isospin mixing: predicted $5 / 2^{-}$states

$$
\begin{array}{rlr}
\Sigma_{c}^{*} \bar{D}^{*} 1 / 2\left(5 / 2^{-}\right) & \Xi_{c}^{*} \bar{D}^{*} 0\left(5 / 2^{-}\right) \\
\Sigma_{c}^{*+} \bar{D}^{* 0}=4524.4 \pm 2.4 & \Xi_{c}^{* 0} \bar{D}^{* 0}=4652.9 \pm 0.6 \\
\Sigma_{c}^{*++} D^{*-}=4528.2 \pm 0.7 & \Xi_{c}^{*+} D^{*-}=4656.2 \pm 0.7
\end{array}
$$

Mixed isopsin:
$|P\rangle=\cos \phi\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\sin \phi\left|\frac{3}{2}, \frac{1}{2}\right\rangle$
Mixed isospin:

$$
|P\rangle=\cos \phi|0,0\rangle+\sin \phi|1,0\rangle
$$

Decays:
$\rightarrow J / \psi p$: D-wave, spin flip
Reason for absence at LHCb?
$\rightarrow J / \psi \Delta$: S-wave, spin cons. $\quad \rightarrow J / \psi \Sigma^{*}$: S-wave, spin cons.
$\Longrightarrow I=3 / 2$ decay enhanced. $\Longrightarrow I=1$ decay enhanced.

Conclusions

Pattern is

- easily understood
- parameter insensitive
- generic

- Binding in certain $I\left(J^{P}\right)$ only
- $3 / 2^{-} \Sigma_{c} \bar{D}^{*}=P_{c}(4450)$?
- $5 / 2^{-} \sum_{c}^{*} \bar{D}^{*}$ with D-wave decay

- Predict $\Xi_{c}^{*} \bar{D}^{*} 0\left(5 / 2^{-}\right)$partner
- All states are isospin mixtures

Backup slides

Central potential

$-C(r)$

Central potential

Central potential

$\Lambda=700 \mathrm{MeV} \quad 1 / 2-$

5/2-

5/2-

$\Lambda=130$	1/2-	3/2-	5/2-
ऽ*D*	+20/3	$+8 / 3$	-0000.0.0.0......-4
こD*	+16/3	\cdots	
इ*D			
^D*			
	\ldots		
ID			

$\Lambda=150$	1/2-	3/2-	5/2-
г*D*	+20/3	+8/3	-4
こD*	+16/3	-0.0. - 8 -	
$\Sigma *$ D			
$\Sigma \mathrm{D}$			
^D*			
$\wedge \mathrm{D}$			

