Molecules of hadrons bound by pion exchange: application to LHCb pentaquarks

Tim Burns

Swansea University

8 November 2017

[T.B., Eur.Phys.J. A51, 152 (2015), 1509.02460] [T.B. & E.Swanson (ongoing)]

$P_c(4380)$ and $P_c(4450)$

	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass Width	$\begin{array}{c} 4380 \pm 8 {\pm} 29 \\ 205 \pm 18 \pm 86 \end{array}$	$\begin{array}{c} 4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19 \end{array}$
Assignment 1 Assignment 2 Assignment 3	$3/2^-$ $3/2^+$ $5/2^+$	$5/2^+$ $5/2^-$ $3/2^-$

$P_{c}(4380)$ and $P_{c}(4450)$

		$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass Width		$\begin{array}{c} 4380 \pm 8 {\pm} 29 \\ 205 \pm 18 \pm 86 \end{array}$	$\begin{array}{c} 4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19 \end{array}$
Assignment 1 Assignment 2 Assignment 3		$3/2^-$ $3/2^+$ $5/2^+$	5/2 ⁺ 5/2 ⁻ 3/2 ⁻
$\frac{\sum_{c}^{*+}\bar{D}^{0}}{\sum_{c}^{+}\bar{D}^{*0}}{\Lambda_{c}^{+}(1P)\bar{D}^{0}}$	$(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udu)(c\bar{c})$	4382.3 ± 2.4	$4459.9 \pm 0.5 \\ 4457.09 \pm 0.35 \\ 4448.93 \pm 0.07$

$P_c(4380)$ and $P_c(4450)$

		$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass Width		$\begin{array}{c} 4380 \pm 8 {\pm} 29 \\ 205 \pm 18 \pm 86 \end{array}$	$\begin{array}{c} 4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19 \end{array}$
Assignment 1 Assignment 2 Assignment 3		$3/2^-$ $3/2^+$ $5/2^+$	5/2 ⁺ 5/2 ⁻ 3/2 ⁻
$ \begin{array}{c} \overline{\Sigma_c^{*+}\bar{D}^0} \\ \overline{\Sigma_c^{+}\bar{D}^{*0}} \\ \Lambda_c^{+}(1P)\bar{D}^0 \\ \chi_{c1}P \end{array} $	$(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udu)(c\bar{c})$	4382.3 ± 2.4	$\begin{array}{c} 4459.9 \pm 0.5 \\ 4457.09 \pm 0.35 \\ 4448.93 \pm 0.07 \end{array}$

Hidden-charm molecules

- Yang, Sun, He, Liu, Zhu (2011)
- Wu, Molina, Oset, Zou, Xiao, Nieves, Uchino, Liang, Roca, Magas, Feijoo, Ramos, ... (2010-2016)
- Karliner, Rosner (2015)
- ► He (2015)
- Shimizu, Suenaga, Harada (2016)
- Chen, Liu, Li, Zhu (2015)
- Yamaguchi, Santopinto (2016)
- Huang, Deng, Ping, Wang (2015)
- Yang, Ping (2015)
- Ortega, Entem, Fernandez (2016)

•

Potential mixes particles and angular momenta, e.g.

$$\land_c \bar{D}({}^2S_{1/2}) \to \Sigma_c \bar{D}^*({}^4D_{1/2})$$

but the pattern is driven by diagonal blocks of fixed particles.

Note

- $\Lambda_c \Lambda_c \pi$ vertex is forbidden (isospin)
- $\overline{D}\overline{D}\pi$ vertex is forbidden (spin-parity)

Potential mixes particles and angular momenta, e.g.

$$\land_c \bar{D}({}^2S_{1/2}) \to \Sigma_c \bar{D}^*({}^4D_{1/2})$$

but the pattern is driven by diagonal blocks of fixed particles.

Note

- $\Lambda_c \Lambda_c \pi$ vertex is forbidden (isospin)
- $\overline{D}\overline{D}\pi$ vertex is forbidden (spin-parity)

Quark models and heavy-quark chiral Lagrangians give

$$V(\vec{r}) = \left[V_C(r) \vec{\Sigma}_1 \cdot \vec{\Sigma}_2 + V_T(r) S_{12}(\hat{r}) \right] \vec{T}_1 \cdot \vec{T}_2$$

Quark models and heavy-quark chiral Lagrangians give

$$V(\vec{r}) = \left[V_C(r)\vec{\Sigma}_1 \cdot \vec{\Sigma}_2 + V_T(r)S_{12}(\hat{r})\right]\vec{T}_1 \cdot \vec{T}_2$$

Coefficents are model-independent; e.g. $\Sigma_c \overline{D}^*$ in $1/2(3/2^-)$:

$$\begin{array}{c|c} |{}^{4}S_{3/2}\rangle & |{}^{2}D_{3/2}\rangle & |{}^{4}D_{3/2}\rangle \\ \langle {}^{4}S_{3/2}| & -\frac{8}{3}V_{C} & -\frac{8}{3}V_{T} & -\frac{16}{3}V_{T} \\ \langle {}^{2}D_{3/2}| & -\frac{8}{3}V_{T} & +\frac{16}{3}V_{C} & +\frac{8}{3}V_{T} \\ \langle {}^{4}D_{3/2}| & -\frac{16}{3}V_{T} & +\frac{8}{3}V_{T} & -\frac{8}{3}V_{C} \end{array}$$

and relative strengths fixed by HQ symmetry.

Quark models and heavy-quark chiral Lagrangians give

$$V(\vec{r}) = \left[V_{C}(r) \vec{\Sigma}_{1} \cdot \vec{\Sigma}_{2} + V_{T}(r) S_{12}(\hat{r}) \right] \vec{T}_{1} \cdot \vec{T}_{2}$$

Coefficents are model-independent; e.g. $\Sigma_c \overline{D}^*$ in $1/2(3/2^-)$:

$$\begin{array}{c|c} |{}^{4}S_{3/2}\rangle & |{}^{2}D_{3/2}\rangle & |{}^{4}D_{3/2}\rangle \\ \langle {}^{4}S_{3/2}| & -\frac{8}{3}V_{C} & -\frac{8}{3}V_{T} & -\frac{16}{3}V_{T} \\ \langle {}^{2}D_{3/2}| & -\frac{8}{3}V_{T} & +\frac{16}{3}V_{C} & +\frac{8}{3}V_{T} \\ \langle {}^{4}D_{3/2}| & -\frac{16}{3}V_{T} & +\frac{8}{3}V_{T} & -\frac{8}{3}V_{C} \end{array}$$

and relative strengths fixed by HQ symmetry.

Central and tensor potentials with form factor cutoff

Quark models and heavy-quark chiral Lagrangians give

$$V(\vec{r}) = \left[V_C(r) \vec{\Sigma}_1 \cdot \vec{\Sigma}_2 + V_T(r) S_{12}(\hat{r}) \right] \vec{T}_1 \cdot \vec{T}_2$$

Coefficents are model-independent; e.g. $\Sigma_c \overline{D}^*$ in $1/2(3/2^-)$:

$$\begin{array}{c|c} |{}^{4}S_{3/2}\rangle & |{}^{2}D_{3/2}\rangle & |{}^{4}D_{3/2}\rangle \\ \langle {}^{4}S_{3/2}| & -\frac{8}{3}V_{C} & -\frac{8}{3}V_{T} & -\frac{16}{3}V_{T} \\ \langle {}^{2}D_{3/2}| & -\frac{8}{3}V_{T} & +\frac{16}{3}V_{C} & +\frac{8}{3}V_{T} \\ \langle {}^{4}D_{3/2}| & -\frac{16}{3}V_{T} & +\frac{8}{3}V_{T} & -\frac{8}{3}V_{C} \end{array}$$

and relative strengths fixed by HQ symmetry.

Central and tensor potentials with form factor cutoff

Larger isospin \implies weaker potential; e.g. $V_{I=3/2} = -\frac{1}{2}V_{I=1/2}$

Quark models and heavy-quark chiral Lagrangians give

$$V(\vec{r}) = \left[V_C(r)\vec{\Sigma}_1 \cdot \vec{\Sigma}_2 + V_T(r)S_{12}(\hat{r})\right]\vec{T}_1 \cdot \vec{T}_2$$

Coefficents are model-independent; e.g. $\Sigma_c \overline{D}^*$ in $1/2(3/2^-)$:

and relative strengths fixed by HQ symmetry.

Central and tensor potentials with form factor cutoff

Larger isospin \implies weaker potential; e.g. $V_{I=3/2} = -\frac{1}{2}V_{I=1/2}$

For channels with S-waves, binding is driven by coefficient of $V_C(r)$ (and unlike for NN, this can be positive...)

Critical form factor

Critical form factor

Conventional wisdom

"Molecules exist close to S-wave thresholds"

Conventional wisdom

"Molecules exist close to S-wave thresholds"

- Only for certain quantum numbers
- "Few" states exist \Leftrightarrow all are "near" threshold
- ▶ "Many" states exist ⇔ some are more deeply bound
- Pattern is driven by coefficient of V_C, due to π exchange, and understood in fixed-particle basis...but is more general.

Conventional wisdom

"Molecules exist close to S-wave thresholds"

- Only for certain quantum numbers
- "Few" states exist \Leftrightarrow all are "near" threshold
- ► "Many" states exist ⇔ some are more deeply bound
- Pattern is driven by coefficient of V_C, due to π exchange, and understood in fixed-particle basis...but is more general.

P-wave states? (e.g $1/2^+$, $3/2^+$, $5/2^+$)

- Possible, but with much larger cut-off, implying many more states overall
- Pattern is driven by coefficient of V_T .
- States near wrong thresholds for $P_c(4380)$, $P_c(4450)$.

$\Xi_c^* \bar{D}^*$ molecules

The potential matrices (central + tensor) are directly related.

Predict loosely bound $0(5/2^-) \Xi_c^* \overline{D}^*$ state, observable in $\Lambda_b \to J/\psi \Lambda \eta$, and $\Xi_b \to J/\psi \Lambda K^-$ (LHCb run II).

Isospin mixing: $P_c(4380)$ and $P_c(4450)$

$$uudc\bar{c} = \begin{cases} (udc)(u\bar{c}) = \Sigma_c^+ \bar{D}^0\\ (uuc)(d\bar{c}) = \Sigma_c^{++} D^- \end{cases}$$

Isospin-conserving interactions give $|I, I_3\rangle$ eigenstates,

$$\begin{pmatrix} |\frac{1}{2}, \frac{1}{2}\rangle \\ |\frac{3}{2}, \frac{1}{2}\rangle \end{pmatrix} = \begin{pmatrix} -\sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} \end{pmatrix} \begin{pmatrix} |\Sigma_c^+ \bar{D}^0\rangle \\ |\Sigma_c^{++} D^-\rangle \end{pmatrix}$$

but only if the masses $\Sigma_c^+ = \Sigma_c^{++}$ and $ar{D}^0 = D^-$.

Otherwise, isospin is not a good quantum number.

Isospin mixing: $P_c(4380)$ and $P_c(4450)$

$$\begin{split} P_c(4380) &= 4380 \pm 8 \pm 29 \qquad P_c(4450) = 4449 \pm 1.7 \pm 2.5 \\ \Sigma_c^{*+} \bar{D}^0 &= 4382.3 \pm 2.4 \qquad \Sigma_c^+ \bar{D}^{*0} = 4459.9 \pm 0.5 \\ \Sigma_c^{*++} D^- &= 4387.5 \pm 0.7 \qquad \Sigma_c^{++} D^{*-} = 4464.24 \pm 0.23 \end{split}$$

The P_c states have mixed isospin:

$$|P_c\rangle = \cos \phi |\frac{1}{2}, \frac{1}{2}\rangle + \sin \phi |\frac{3}{2}, \frac{1}{2}\rangle$$

They should decay also into $J/\psi \Delta^+$ and $\eta_c \Delta^+$, with weights:

$$J/\psi p: J/\psi \Delta^{+}: \eta_{c} \Delta^{+} = 2\cos^{2} \phi: 5\sin^{2} \phi: 3\sin^{2} \phi \quad [P_{c}(4380)]$$
$$J/\psi p: J/\psi \Delta^{+}: \eta_{c} \Delta^{+} = \cos^{2} \phi: 10\sin^{2} \phi: 6\sin^{2} \phi \quad [P_{c}(4450)]$$

Isospin mixing: predicted $5/2^-$ states $\Sigma_c^* \bar{D}^* 1/2(5/2^-)$

$$\Sigma_c^{*+} \bar{D}^{*0} = 4524.4 \pm 2.4$$

 $\Sigma_c^{*++} D^{*-} = 4528.2 \pm 0.7$

 $\begin{array}{l} \mbox{Mixed isopsin:} \\ |P\rangle = \cos\varphi |\frac{1}{2},\frac{1}{2}\rangle + \sin\varphi |\frac{3}{2},\frac{1}{2}\rangle \end{array}$

Decays: $\rightarrow J/\psi p$: D-wave, spin flip Reason for absence at LHCb?

ightarrow J/ $\psi\Delta$: S-wave, spin cons. \implies I = 3/2 decay enhanced. Isospin mixing: predicted $5/2^{-}$ states $\Sigma_{c}^{*}\bar{D}^{*} 1/2(5/2^{-})$ $\Xi_{c}^{*}\bar{D}^{*} 0(5/2^{-})$

$$\Sigma_c^{*+} \bar{D}^{*0} = 4524.4 \pm 2.4$$

$$\Sigma_c^{*++} D^{*-} = 4528.2 \pm 0.7$$

$$\Xi_c^{*0} \bar{D}^{*0} = 4652.9 \pm 0.6$$
$$\Xi_c^{*+} D^{*-} = 4656.2 \pm 0.7$$

Mixed isopsin: $|P\rangle = \cos \phi |\frac{1}{2}, \frac{1}{2}\rangle + \sin \phi |\frac{3}{2}, \frac{1}{2}\rangle$

$$\begin{array}{l} \mbox{Mixed isospin:} \\ |P\rangle = \cos\varphi |0,0\rangle + \sin\varphi |1,0\rangle \end{array}$$

Decays: $\rightarrow J/\psi p$: D-wave, spin flip Reason for absence at LHCb?

Decays: $\rightarrow J/\psi \Lambda$: D-wave, spin flip e.g. $\Lambda_b^0 \rightarrow J/\psi \Lambda \eta$, $J/\psi \Lambda \phi$

 $\rightarrow J/\psi\Delta$: S-wave, spin cons. $\rightarrow J/\psi\Sigma^*$: S-wave, spin cons. \implies I = 3/2 decay enhanced. \implies I = 1 decay enhanced.

Conclusions

Pattern is

- easily understood
- parameter insensitive

▶ generic

Binding in certain *I*(*J^P*) only
3/2⁻ Σ_cD̄* = P_c(4450)?
5/2⁻ Σ_cD̄* with D-wave decay

▶ Predict Ξ^{*}_cD̄^{*} 0(5/2⁻) partner
▶ All states are isospin mixtures

Backup slides

Central potential

Central potential

Central potential

