$B \rightarrow D^{(*)}$ hadronic form factors and impact on $R(D^{(*)})$ predictions

Stefan Schacht Università di Torino & INFN Sezione di Torino

UNIVERSITÀ DEGLI STUDI DI TORINO

November 2017, CERN

based on works with Dante Bigi and Paolo Gambino Phys.Lett. B769 (2017) 441-445 [1703.06124], 1707.09509

Importance and Status of $|V_{cb}|$

- *V_{cb}* plays an important role in the Unitarity Triangle.
 We want to overconstrain the triangle as a new physics test.
- V_{cb} goes into the prediction of ε_K via

 $\varepsilon_K \propto x |V_{cb}|^4 + \dots$

• V_{cb} goes into the predictions of flavor changing neutral currents.

The ratio

directly constrains one side of the Unitarity Triangle.

Status: HFLAV V _{cb} averages		[HFLAV, 1612.07233v2]
$ V_{cb} = (42.19 \pm 0.78) \cdot 10^{-3}$	from	$B \to X_c l \nu$
$ V_{cb} = (39.05 \pm 0.47_{exp} \pm 0.58_{th}) \cdot 10^{-3}$	from	$B \to \mathbf{D}^* l \nu$
$ V_{cb} = (39.18 \pm 0.94_{exp} \pm 0.36_{th}) \cdot 10^{-3}$	from	$B \rightarrow D l \nu$

Recent (preliminary) Belle data for $B \rightarrow D^* l \nu$

• First time *w* and angular deconvoluted distributions independent of parametrization.

Possible to use different parametrizations.

 $w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}, q^2 = (p_B - p_{D^*})^2$

Model independent form factor parametrization

[Boyd Grinstein Lebed (BGL), hep-ph/9412324, hep-ph/9504235, hep-ph/9705252]

Boyd Grinstein Lebed parametrization

$$f_i(z) = \frac{1}{B_i(z)\phi_i(z)} \sum_{n=0}^{\infty} a_n^i z^n ,$$

$$z = \frac{\sqrt{1+w} - \sqrt{2}}{\sqrt{1+w} + \sqrt{2}} , \qquad w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}} .$$

• 0 < z < 0.056 for $B \to D^* l \nu \Rightarrow$ truncation at N = 2 enough, $z^3 \sim 10^{-4}$.

• $B_i(z)$: "Blaschke factor": removes poles.

- $\phi_i(z)$: phase space factors.
- Limit of massless leptons:

3 form factors V_4 (vector), A_1 and A_5 (axial vector).

• Massive lepton $m_{\tau} \neq 0$: additional form factor P_1 (pseudoscalar).

Stefan Schacht

CERN Nov 2017 3 / 20

Unitarity Constraints

[Boyd Grinstein Lebed 1994, 1997]

Use dispersion relations to relate physical semileptonic region

$$m_l^2 \leq q^2 \leq (m_B - m_D)^2$$
, $q^2 \equiv (p_B - p_{D^*})^2$,

to pair-production region beyond threshold

$$q^2 \ge (m_B + m_D)^2$$
, with poles at $q^2 = m_{B_c}^2$.

- Constrain form factors in pair-production region with pert. QCD.
- Translate constraint to semileptonic region using analyticity.

(Weak) Unitarity Conditions

• Vector current:
$$\sum_{i=0}^{\infty} \left(a_n^{V_4}\right)^2 \le 1$$
.

• Axial vector current: $\sum_{i=0}^{\infty} \left(\left(a_n^{A_1} \right)^2 + \left(a_n^{A_5} \right)^2 \right) \le 1$.

Additional Information on Form Factors

Lattice QCD (LQCD)

[FNAL/MILC 1403.0635, HPQCD 1612.06716]

Normalization for the $|V_{cb}|$ extraction with form factor value $A_1(w = 1) = 0.902(12).$

Light Cone Sum Rules	(LCSR)	[Faller Khodjamirian Klein Mannel 0809.0222]
$A_1(w_{\rm max}) = 0.65(18) ,$	$R_1(w_{\rm max}) = 1.32(4)$,	$R_2(w_{\rm max}) = 0.91(17)$.

Heavy Quark Effective Theory and QCD sum rules (HQET)

[Bernlochner Ligeti Papucci Robinson 1703.05330, Caprini Lellouch Neubert hep-ph/9712417, Luke Phys.Lett B252,447 (1990), Neubert Rieckert Nucl. Phys. B382, 97 (1992) Neubert hep-ph/9306320. Ligeti Neubert Nir hep-ph/9209271, 9212266, 93053041

- Important constraints for all $B^{(*)} \rightarrow D^{(*)}$ form factors.
- In the heavy quark limit $m_{c,b} \gg \Lambda_{\text{QCD}}$ all $B^{(*)} \rightarrow D^{(*)}$ form factors either vanish or are proportional to 1 Isgur-Wise (IW) function.
- NLO corrections at $O(\Lambda_{\text{QCD}}/m_{c,b}, \alpha_s)$ known, expressible with 3 subleading IW functions, which are extracted using QCDSRs.

How large are the theoretical uncertainties due to unknown NNLO corrections, $O(\alpha_s^2, \frac{\Lambda_{QCD}^2}{m_{c,b}^2}, \alpha_s \frac{\Lambda_{QCD}}{m_{c,b}})$?

- Reliable estimate from NLO corrections complicate:
 At zero recoil several form factors protected from NLO power
 corrections through Luke's theorem
 [Luke Phys.Lett B252,447 (1990)]
- Protection does not apply to NNLO corrections.
- The form factors which are not protected by Luke's theorem do have NLO corrections up to 60%.

$$\frac{V_6(w)}{V_1(w)} = 1.0,$$
 (LO)
$$\frac{V_6(w)}{V_1(w)} = 1.58(1 - 0.18(w - 1) + ...).$$
 (NLO)

Compare LQCD and HQET results: Difference from beyond NLO corrections

$$\begin{split} \frac{S_1(w)}{V_1(w)} \Big|_{\text{LQCD}} &\approx 0.975(6) + 0.055(18)w_1, \quad \frac{S_1(w)}{V_1(w)} \Big|_{\text{HQET}} &\approx 1.021(30) - 0.044(64)w_1 \\ \frac{A_1(1)}{V_1(1)} \Big|_{\text{LQCD}} &= 0.857(15), \qquad \qquad \frac{A_1(1)}{V_1(1)} \Big|_{\text{HQET}} &= 0.966(28) \\ \frac{S_1(1)}{A_1(1)} \Big|_{\text{LQCD}} &= 1.137(21), \qquad \qquad \frac{S_1(1)}{A_1(1)} \Big|_{\text{HQET}} &= 1.055(2), \qquad (w_1 = w - 1) \end{split}$$

beviations of 5% - 13%.

Taking everything into account

NNLO corrections as large as O(10% - 20%) are natural. They cannot be neglected for robust tests of the SM and reliable extractions of V_{cb} .

Strong Unitarity Constraints and HQET Input

• Use HQET information on further $b \rightarrow c$ channels:

 $B \to D, B^* \to D, B^* \to D^*$, to relate them to $B \to D^*$.

• Make the unitarity bounds stronger:

[BGL, hep-ph/9705252]

$$\sum_{i=1}^{H} \sum_{n=0}^{\infty} \frac{b_{in}^2}{2} \le 1. \quad \text{for } S, P, V, A \text{ currents}$$

- Vary QCDSR parameters + higher order corrections: obtain many different unitarity bounds.
- Take their envelope as side condition in the fit.

Allowed regions for BGL parameters from strong unitarity constraints

Nov 2017 9 / 20

Different Method: Use strong unitarity/HQET to eliminate parameters and obtain simplified parametrization

Caprini Lellouch Neubert parametrization as used in exp. analyses

 $h_{A_1}(w) = h_{A_1}(1) \left(1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right),$ $R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2, \quad \text{HQET: } R_1(1) = 1.27$ $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2 \qquad \text{HQET: } R_2(1) = 0.80$

- Theoretical uncertainties of HQET results for slope and curvature of form factor ratios R₁ and R₂ are set to zero.
- Relation of curvature and slope of axial form factor *A*₁ is fixed to HQET central value.
- Uncertainties on fixed parameters never included in exp. analyses.
- At current exp. precision these cannot be longer neglected.

Central values of V_{cb} differ by 3.6% (with LCSR) and 5.6% (wo LCSR)

[Bigi Gambino Schacht 1703.06124 and 1707.09509, "BGL weak" agreeing with Grinstein Kobach, 1703.08170]

F	it	BGL weak	BGL weak	BGL strong	BGL strong	
LC	SR	×	\checkmark	×	\checkmark	
$\chi^2/$	dof	28.2/33	32.0/36	29.6/33	33.1/36	
$ V_{c} $	cb	0.0424 (18)	0.0413 (14)	0.0415(13)	$0.0406 \begin{pmatrix} +12 \\ -13 \end{pmatrix}$	

Fit	CLN	CLN
LCSR	×	\checkmark
χ^2/dof	35.4/37	35.9/40
$ V_{cb} $	0.0393(12)	0.0392(12)

Main reason for deviation

- CLN fit has limited flexibility of slope.
 CLN band underestimates all three low recoil points.
- Extrapolation near w = 1 crucial: Lattice input for V_{cb} extraction.
- CLN fit with free floating $R_{1,2}$ slopes (wo LCSR): $|V_{cb}| = 0.0415(19)$.
- Intrinsic uncertainties of CLN fit can no longer be neglected.

Comparison of $R_{1,2}$ fits with HQET+QCDSR

[Bigi Gambino Schacht 1703.06124, Bernlochner Ligeti Papucci Robinson 1708.07134]

"BGL strong" without LCSR.

"BGL strong" with LCSR.

- Fits for *R*₂ in good agreement with HQET+QCDSR. Same goes for *R*₁ with LCSR.
- *R*₁ without LCSR well compatible with HQET only at small/moderate recoil. At large *w* clear tension with both HQET and LCSR.
 Fit without LCSR appears somewhat disfavored.
- Lattice will compute A_1 and $R_{1,2}$ and settle the story.

Lepton Flavor Nonuniversality:

Anatomy of
$$R(D^*) \equiv \frac{\int_{1}^{w_{\tau,\max}} dw \, d\Gamma_{\tau}/dw}{\int_{1}^{w_{\max}} dw \, d\Gamma/dw}$$

Differential decay rate for $B \rightarrow D^* \tau \nu_{\tau}$

[BGL, hep-ph/9705252]

$$\frac{d\Gamma_{\tau}}{dw} = \frac{d\Gamma_{\tau,1}}{dw} + \frac{d\Gamma_{\tau,2}}{dw}$$
$$\frac{d\Gamma_{\tau,1}}{dw} = \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \left(1 + \frac{m_{\tau}^2}{(2q^2)}\right) \frac{d\Gamma}{dw}$$
$$\frac{d\Gamma_{\tau,2}}{dw} = |V_{cb}|^2 m_{\tau}^2 \times \text{kinematics} \times P_1(z)^2$$

- $d\Gamma/dw$: Measured differential decay rate of $B \rightarrow D^*lv$ with $m_l = 0$, depends on axial vector form factors A_1, A_5 and vector form factor V_4 .
- *P*₁: Additional unconstrained pseudoscalar form factor.
- $d\Gamma_{\tau,2}/dw$ contributes ~ 10% to $R(D^*)$.
- Common normalization/notation:

 $\frac{R_0}{R_0} = \frac{P_1}{A_1} = 1 \quad \text{in heavy quark limit} \quad \text{[BGL, hep-ph/9705252]}$ Stefan Schacht CERN Nov 2017 14 / 20

Standard $R(D^*)$ Calculation: Normalizing P_1 on A_1

- NLO HQET result for $R_0 = P_1/A_1$. [Bernlochner Ligeti Papucci Robinson 1703.05330]
- Estimate of NNLO uncertainty as 15% of P₁ central value (enters quadratically).
- Our result with LCSR and strong unitarity bounds:

$$R_{\tau,1}(D^*) = 0.232 \qquad R_{\tau,2}(D^*) = 0.026,$$

$$R(D^*) = 0.258(5)\binom{+8}{-7} = 0.258\binom{+10}{-9}.$$

Our result without LCSR and strong unitarity bounds:

$$\begin{aligned} R_{\tau,1}(D^*) &= 0.232 , \qquad R_{\tau,2}(D^*) = 0.025 , \\ R(D^*) &= 0.257(5) \binom{+8}{-7} = 0.257 \binom{+10}{-8} . \end{aligned}$$

BGL expansion + enforcing a constraint at $q^2 = 0$

Use N = 2 BGL expansion

$$P_1(w) = \frac{\sqrt{r}}{(1+r)B_{0^-}(z)\phi_{P_1}(z)} \sum_{n=0}^2 a_n^{P_1} z^n,$$

with 3 unknowns $a_0^{P_1}$, $a_1^{P_1}$, $a_2^{P_1}$ and 3 constraints:

- Kinematical endpoint relation $P_1(w_{\text{max}}) = A_5(w_{\text{max}})$, with fit result for $A_5(w_{\text{max}})$.
- HQET result $P_1(1) = 1.21 \pm 0.06 \pm 0.18$.
 - 1st error: Parametric NLO error.
 - 2nd error: Estimate of the NNLO uncertainty as 15% of central value.
- Strong unitarity.

 $R_{\tau,2}(D^*) = 0.028, \quad R(D^*) = 0.260(5)(6) = 0.260(8).$

Comparison of Different Normalizations for P₁

- Dashed yellow: normalized on V_1 , $R(D^*) = 0.268 \binom{+15}{-13}$.
- Dashed blue: normalized on A_1 , $R(D^*) = 0.258 \begin{pmatrix} +10 \\ -9 \end{pmatrix}$.
- Solid blue: zero-recoil normalization to IW function and $P_1(w_{max}) = A_5(w_{max})$, $R(D^*) = 0.260(8)$.

Ref.	$R(D^*)$	Deviation		
Experiment [HFLAV update]	0.304(13)(7)	_		
2017 theory results, using new lattice and exp. data:				
[Bernlochner Ligeti Papucci Robinson 1703.05330]	0.257(3)	3.1σ		
Our result [Bigi Gambino Schacht 1707.09509]	0.260(8)	2.6σ		
[Jaiswal Nandi Patra 1707.09977]	0.257(5)	3.0σ		
2012 theory results:				
[Fajfer Kamenik Nisandzic 1203.2654]	0.252(3)	3.5σ		
[Celis Jung Li Pich 1210.8443]	0.252(2)(3)	3.4σ		
[Tanaka Watanabe 1212.1878]	0.252(4)	3.4σ		

Due to accounting for unkown NNLO corrections, we have a larger uncertainty as present in the literature.

Ref.	R(D)	Deviation		
Experiment [HFLAV update]	0.407(39)(24)	_		
2016/17 theory results, using new lattice and exp. data:				
[Bigi Gambino 1606.08030]	0.299(3)	2.4σ		
[Bernlochner Ligeti Papucci Robinson 1703.05330]	0.299(3)	2.4σ		
[Jaiswal Nandi Patra 1707.09977]	0.302(3)	2.3σ		
2012 theory results:				
[Fajfer Kamenik Nisandzic 1203.2654]	0.296(16)	2.3σ		
[Celis Jung Li Pich 1210.8443]	$0.296\binom{8}{6}(15)$	2.3σ		
[Tanaka Watanabe 1212.1878]	0.305(12)	2.2σ		

Good consensus of theory predictions. Belle data and lattice data beyond zero recoil allow for good determination of form factors, including S_1 . Stefan Schacht CERN Nov 2017 19/20

Conclusions

- Belle has new data: Deconvoluted, independent of parametrization.
- Different parametrizations imply different theoretical assumptions and different treatments of theoretical uncertainties.
- They give different results for $|V_{cb}|$, also with strong unitarity.
- In view of today's exp. precision, it is important to take into account theoretical uncertainties of HQET, including O(10% - 20%) uncertainty from unknown corrections beyond NLO.
- This is rather accomplished using the BGL parametrization with side conditions than by simplified parametrizations.
- Reanalysis of previous Belle and BaBar data is necessary. Together with future lattice data on slopes this will conclusively settle the case.

• Results:
$$|V_{cb}| = 40.6 \binom{+1.2}{-1.3} \cdot 10^{-3}$$
 (with LCSRs),

 $|V_{cb}| = 41.5(1.3) \cdot 10^{-3}$ (wo LCSRs),

 $R(D^*) = 0.260(8)$ (with and wo LCSRs).

• The $R(D^*)$ anomaly is persistent, slightly reduced to 2.6 σ .

BACK-UP

Comparison of $R_{1,2}$ fits with HQET+QCDSR

