$B_{s} \rightarrow K$ form factors from QCD Light-Cone Sum Rules

Aleksey Rusov
University of Siegen, Germany
Workshop "Implications of LHCb measurements and future prospects", CERN, 8 - 10 November 2017
based on ArXiv:1703.04765 (published in JHEP) In collaboration with Alexander Khodjamirian

Introduction

- Exclusive semileptonic $B_{s} \rightarrow K \ell \nu_{\ell}$ decay provides an additional source for the extraction of the CKM matrix element $\left|V_{u b}\right|$
- FCNC rare semileptonic $B_{s} \rightarrow K \ell^{+} \ell^{-}$decays are an additional probe of New Physics
\rightarrow One needs an accurate calculation of the corresponding $B_{s} \rightarrow K$ form factors
- We derive them using the Light-Cone Sum Rules method

The definition of the form factors

$$
\begin{aligned}
\langle K(p)| \bar{q} \gamma^{\mu} b\left|B_{s}(p+q)\right\rangle & =f_{B_{s} K}^{+}\left(q^{2}\right)\left[2 p^{\mu}+\left(1-\frac{m_{B_{s}}^{2}-m_{K}^{2}}{q^{2}}\right) q^{\mu}\right] \\
& +f_{B_{s} K}^{0}\left(q^{2}\right) \frac{m_{B_{s}}^{2}-m_{K}^{2}}{q^{2}} q^{\mu} \\
\langle K(p)| \bar{q} \sigma^{\mu \nu} q_{\nu} b\left|B_{s}(p+q)\right\rangle & =\frac{i f_{B_{s} K}^{T}\left(q^{2}\right)}{m_{B_{s}}+m_{K}}\left[2 q^{2} p^{\mu}+\left(q^{2}-\left(m_{B_{s}}^{2}-m_{K}^{2}\right)\right) q^{\mu}\right]
\end{aligned}
$$

- Involved in the semileptonic $\bar{B}_{s}^{0} \rightarrow K^{+} \ell^{-} \bar{\nu}_{\ell}$ and $\bar{B}_{s}^{0} \rightarrow K^{0} \ell^{+} \ell^{-}$decays
- Needed in non-leptonic B_{s} decays (within QCDF approach) $q=u, d, \quad$ Isospin symmetry is assumed:

$$
f_{B_{s}^{0} K^{+}}^{(+, 0, T)}\left(q^{2}\right)=f_{B_{s}^{0} K^{0}}^{(+, 0, T)}\left(q^{2}\right)
$$

Correlation function

- Starting object used for calculation of $B_{s} \rightarrow K$ form factors in LCSR - Correlation function

$$
\begin{aligned}
F_{B_{s} K}^{\mu}(p, q) & =i \int d^{4} x e^{i q x}\langle K(p)| T\left\{\bar{q}(x) \Gamma^{\mu} b(x), m_{b} \bar{b}(0) i \gamma_{5} s(0)\right\}|0\rangle \\
& = \begin{cases}F_{B_{s} K}\left(q^{2},(p+q)^{2}\right) p^{\mu}+\tilde{F}_{B_{s} K}\left(q^{2},(p+q)^{2}\right) q^{\mu}, & \Gamma^{\mu}=\gamma^{\mu} \\
F_{B_{s} K}^{T}\left(q^{2},(p+q)^{2}\right)\left[q^{2} p^{\mu}-(q \cdot p) q^{\mu}\right], & \Gamma^{\mu}=-i \sigma^{\mu \nu} q_{\nu}\end{cases}
\end{aligned}
$$

- Region of light-cone dominance ($x^{2} \sim 0$)
- $q^{2} \ll m_{b}^{2}$
- $(p+q)^{2} \ll m_{b}^{2}$

Relevant OPE diagrams

- At leading order in α_{s} expansion

■ Radiative corrections to the relevant hard-scattering kernels

The current accuracy of the OPE result

$$
\begin{gathered}
F_{B_{s} K}^{(T)}\left(q^{2}\right) \Rightarrow \mathrm{OPE}=\left(T_{0}^{(2)}+\left(\alpha_{s} / \pi\right) T_{1}^{(2)}+\left(\alpha_{s} / \pi\right)^{2} T_{2}^{(2)}\right) \otimes \varphi_{K}^{(2)} \\
+\frac{\mu_{K}}{m_{b}}\left(T_{0}^{(3)}+\left(\alpha_{s} / \pi\right) T_{1}^{(3)}\right) \otimes \varphi_{K}^{(3)}+T_{0}^{(4)} \otimes \varphi_{K}^{(4)}+\langle\bar{q} q\rangle\left(T_{0}^{(5)} \otimes \varphi_{K}^{(2)}+\frac{\mu_{K}}{m_{b}} T_{0}^{(6)} \otimes \varphi_{K}^{(3)}\right) \\
\mu_{K}=\frac{m_{K}^{2}}{m_{s}+m_{q}}, \quad \varphi_{K}^{(k)}=\mathrm{AF}+\text { non-asympt. corrections }
\end{gathered}
$$

- LO twist 2, 3, $4 q \bar{q}$ and $\bar{q} q G$ terms
[V.Belyaev, A.Khodjamirian, R.Rückl (1993); V.Braun, V.Belyaev, A.Khodjamirian, R.Rückl (1996)]
- NLO $O\left(\alpha_{s}\right)$ twist 2 (collinear factorization)
[A.Khodjamirian, R.Rückl, S.Weinzierl, O. Yakovlev (1997); E.Bagan, P.Ball, V.Braun (1997)]
- NLO $O\left(\alpha_{s}\right)$ twist 3 (coll. factorization for asympt. DA)
[P. Ball, R. Zwicky (2001); G.Duplancic, A.Khodjamirian, B.Melic, Th.Mannel, N.Offen (2007)]
- Part of NNLO $O\left(\alpha_{s}^{2} \beta_{0}\right)$ twist 2 [A. Bharucha (2012)]
- LO twist 5 and twist 6 in factorization approximation [A.V. Rusov (2017)]

LCSR: a general scheme

- Transform the OPE result to the dispersion form (in $(p+q)^{2}$ variable):

$$
F_{B_{s} K}^{(T)(\mathrm{OPE})}\left(q^{2},(p+q)^{2}\right)=\frac{1}{\pi} \int_{m_{b}^{2}}^{\infty} d s \frac{\operatorname{Im} F_{B_{s} K}^{(T)(\mathrm{OPE})}\left(q^{2}, s\right)}{s-(p+q)^{2}}
$$

- Matching to the hadronic dispersion relation (isolating B_{s}-meson state)
- Applying the quark hadron duality
- Applying the Borel transform
- Finally

$$
\begin{aligned}
& f_{B_{s} K}^{+}\left(q^{2}\right)=\frac{e^{m_{B_{s}}^{2} / M^{2}}}{2 m_{B_{s}}^{2} f_{B_{s}}} \frac{1}{\pi} \int_{m_{b}^{2}}^{s_{0}^{B_{s}}} d s \operatorname{lm} F_{B_{s} K}^{(\mathrm{OPE})}\left(q^{2}, s\right) e^{-s / M^{2}} \\
& f_{B_{s} K}^{T}\left(q^{2}\right)=\frac{\left(m_{B_{s}}+m_{K}\right) e^{m_{B_{s}}^{2} / M^{2}}}{2 m_{B_{s}}^{2} f_{B_{s}}} \frac{1}{\pi} \int_{m_{b}^{2}}^{s_{o}^{B_{s}}} d s \operatorname{Im} F_{B_{s} K}^{T(\mathrm{OPE})}\left(q^{2}, s\right) e^{-s / M^{2}}
\end{aligned}
$$

Factorizable twist-5 and twist-6 contributions

A.V. Rusov, 1705.01929 [hep-ph]

- An estimate of the twist-5 and twist-6 contributions is obtained in the factorization approximation
[V.M. Braun, A. Khodjamirian, M. Maul (2000)], LCSR for $F_{\pi}\left(Q^{\mathbf{2}}\right)$;
[S.S. Agaev, V.M. Braun, N. Offen, F.A. Porkert (2011)], LCSR for $F_{\pi^{\mathbf{0}} \gamma_{\gamma}}\left(Q^{\mathbf{2}}\right)$

Factorizable twist-5 and twist-6 contributions

A.V. Rusov, 1705.01929 [hep-ph]

$$
f_{B_{s} K}^{+}(0)=0.336 \pm 0.023
$$

[A. Khodjamirian, A.V. Rusov (2017)]

$f_{B_{s} K}^{+}(0)$	0.336
Tw2 LO	47.0%
Tw2 NLO	8.8%
Tw3 LO	47.1%
Tw3 NLO	-3.9%
Tw4 LO	1.0%
Tw5 LO-fact	-0.039%
Tw6 LO-fact	-0.005%

Higher twist contributions are strongly suppressed!

Results for the $B_{s} \rightarrow K$ form factors

A. Khodjamirian, A.V. Rusov, 1703.04765 [hep-ph]

LCSR results are fitted to the z-expansion (BCL parametrization)

$$
\begin{gathered}
f_{B_{s} K}^{+, T}\left(q^{2}\right)=\frac{f_{B_{s} K}^{+, T}(0)}{1-q^{2} / m_{B^{*}}^{2}}\left\{1+b_{1\left(B_{s} K\right)}^{+, T}\left[z\left(q^{2}\right)-z(0)+\frac{1}{2}\left(z\left(q^{2}\right)^{2}-z(0)^{2}\right)\right]\right\} \\
z\left(q^{2}\right)=\frac{\sqrt{\left(m_{B_{s}}+m_{K}\right)^{2}-q^{2}}-\sqrt{\left(m_{B_{s}}+m_{K}\right)^{2}-t_{0}}}{\sqrt{\left(m_{B_{s}}+m_{K}\right)^{2}-q^{2}}+\sqrt{\left(m_{B_{s}}+m_{K}\right)^{2}-t_{0}}}, \quad t_{0}=\left(m_{B_{s}}+m_{K}\right)\left(\sqrt{m_{B_{s}}}-\sqrt{m_{K}}\right)^{2} \\
\\
\begin{array}{|c|c|c|}
\hline f_{B_{s} K}^{+}(0) & b_{1\left(B_{s} K\right)}^{+} & \text {Correlation } \\
\hline 0.336 \pm 0.023 & -2.53 \pm 1.17 & 0.79 \\
\hline \hline f_{B_{s} K}^{T}(0) & b_{1\left(B_{s} K\right)}^{T} & \text { Correlation } \\
\hline 0.320 \pm 0.019 & -1.08 \pm 1.53 & 0.74 \\
\hline
\end{array}
\end{gathered}
$$

Results for the $B_{s} \rightarrow K$ form factors

A. Khodjamirian, A.V. Rusov, 1703.04765 [hep-ph]

Lattice QCD results: C.M. Bouchard et al., hep-lat: 1406.2279

Applications

A. Khodjamirian, A.V. Rusov, 1703.04765 [hep-ph]

- The partially integrated $\bar{B}_{s}^{0} \rightarrow K^{+} \ell^{-} \bar{\nu}_{\ell}$ decay width

$$
\Delta \zeta_{B_{s} K}\left[0,12 \mathrm{GeV}^{2}\right] \equiv \frac{1}{\left|V_{u b}\right|^{2}} \int_{0}^{12 \mathrm{GeV}^{2}} d q^{2} \frac{d \Gamma\left(\bar{B}_{s} \rightarrow K^{+} \ell \bar{\nu}_{\ell}\right)}{d q^{2}}=7.03_{-0.69}^{+0.73} \mathrm{ps}^{-1}
$$

- The $C P$-averaged q^{2}-binned branching fraction of $\bar{B}_{s}^{0} \rightarrow K^{0} \ell^{+} \ell^{-}$

$$
\begin{gathered}
\mathcal{B}_{B_{s} K}\left[q_{1}^{2}, q_{2}^{2}\right] \equiv \frac{1}{2} \frac{1}{q_{2}^{2}-q_{1}^{2}} \int_{q_{1}^{2}}^{q_{2}^{2}} d q^{2}\left[\frac{d B\left(\bar{B}_{s}{ }^{0} \rightarrow K^{0} \ell^{+} \ell^{-}\right)}{d q^{2}}+\frac{d B\left(B_{s}^{0} \rightarrow \bar{K}^{0} \ell^{+} \ell^{-}\right)}{d q^{2}}\right] \\
\mathcal{B}_{B_{s} K}\left[1.0 \mathrm{GeV}^{2}, 6.0 \mathrm{GeV}^{2}\right]=\left(4.38_{-0.57}^{+0.62} \pm 0.28\right) \times 10^{-8} \mathrm{GeV}^{-2}
\end{gathered}
$$

- q^{2}-binned direct $C P$-asymmetry in $\bar{B}_{s}^{0} \rightarrow K^{0} \ell^{+} \ell^{-}$decays

$$
\mathcal{A}_{B_{s} K}\left[1.0 \mathrm{GeV}^{2}, 6.0 \mathrm{GeV}^{2}\right]=-0.04_{-0.03}^{+0.01}
$$

Conclusion

- $B_{s} \rightarrow K$ form factors at large recoil from LCSR are predicted
- The partially integrated $\bar{B}_{s}^{0} \rightarrow K^{+} \ell^{-} \bar{\nu}_{\ell}$ decay width is calculated (to be used for the $\left|V_{u b}\right|$ extraction)
- The $C P$-averaged q^{2}-binned branching fraction and q^{2}-binned direct $C P$-asymmetry in $\bar{B}_{s}^{0} \rightarrow K^{0} \ell^{+} \ell^{-}$decays are predicted (accounting nonlocal effects)
- Experimental data on $\bar{B}_{s}^{0} \rightarrow K^{0} \ell^{+} \ell^{-}$and $\bar{B}_{s}^{0} \rightarrow K^{+} \ell^{-} \bar{\nu}_{\ell}$ decays are anticipated

