CP-violation in decay

Daniel O'Hanlon, on behalf of the LHCb collaboration

LHCb Implications Workshop

November 9th, 2017

CP-violation in decay

- b-hadron decays without charm in the final state can have similar sized tree (A₁) and penguin (A₂) contributions
- Maximise potential for CP violation in decay (different weak phases, $\phi = \phi_1 \phi_2$)
- Multi-body final states also proceed via numerous intermediate resonances variation in strong phase, $\delta = \delta_1 - \delta_2$, across Dalitz plot

$$\mathcal{A}_{\rm CP} = \frac{2|A_1||A_2|\sin\delta\sin\phi}{|A_1|^2 + |A_2|^2 + 2|A_1||A_2|\cos\delta\cos\phi}$$

See talk by F.Dordei for additional CPV measurements

- In principle, the most promising investigations are in multi-body decays many techniques used to analyse them:
 - Phase-space integrated CP-asymmetries [arXiv:1603.00413]
 - Amplitude fits three and four-body
 - Binned phase-space asymmetries [arXiv:1408.5373]
 - Triple-product asymmetries [arXiv:1609.05216, arXiv:1603.02870]
 - Kernel based two-sample hypothesis testing ('Energy test') [arXiv:1410.4170]
- All of these used in upcoming searches for CP-violation, using the decays described in this talk

$B^0_{(s)} \rightarrow K^0_{\rm S} h^+ h^-$ branching fractions

[arXiv:1707.01665, to appear in JHEP]

$B^0_{(s)} ightarrow K^0_{ m S} h^+ h^-$ decays

- Loop-dominated avenue to measure the CKM angle β , via $B \rightarrow \phi K_{\rm S}^0$ (or $B \rightarrow \rho^0 K_{\rm S}^0$, ...) [arXiv:hep-ph/9704277].
- Can also obtain the CKM angle γ from isospin or flavour SU(3) symmetry relations between decay modes [arXiv:hep-ph/0601233, arXiv:1303.0846].
- Arguments can also be reversed to provide information on hadronic parameters in $B \rightarrow K^* \pi$ [arXiv:1704.01596].

$$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \frac{\text{HFLAV}}{Summer 2016}$$

b→ccs	World Average		0.69 ± 0.02
φ K ⁰	Average	+ + -	0.74 +0.11
η′ K ^o	Average	++	0.63 ± 0.06
K _s K _s K	Average		0.72 ± 0.19
π [°] K [°]	Average	⊢★	0.57 ± 0.17
ρ ⁰ K _S	Average	⊢ ★−1	0.54 +0.18
ωK _s	Average		0.71 ± 0.21
f _o K _S	Average	- -	0.69 +0.10
f ₂ K _S	Average	• *	0.48 ± 0.53
f _x K _s	Average	* •	0.20 ± 0.53
π ⁰ π ⁹ K _S	Average	-	-0.72 ± 0.71
φ π ⁰ K _S	Average		0.97 +0.03
π ⁺ π ['] K _S	N R verage	+	0.01 ± 0.33
K ⁺ K [−] K ⁰	Average	 .	0.68 +0.09

$B^0_{(s)} \to K^0_{\rm S} h^+ h^-$ branching fractions

- All $B^0 \rightarrow K^0_S h^+ h^-$ decays observed at the B-factories [arXiv:1003.0640].
- $B_s^0 \rightarrow K_S^0 \pi^+ \pi^-$ and $B_s^0 \rightarrow K_S^0 K^{\pm} \pi^{\mp}$ observed with 1fb⁻¹ of 2011 LHCb data [arXiv:1307.7648].
- Aim for the $3fb^{-1}$ update is to make the most precise measurement of the branching fractions, and make an observation of $B_s^0 \rightarrow K_S^0 K^+ K^-$.

Upstream track TT Long track T track VELO track VELO track T1 T2 T3

 $K_{\rm S}^0$ -mesons reconstructed from two *downstream* or *long* tracks.

$B^0_{(s)} \to K^0_{\rm S} h^+ h^-$ branching fractions

Yields:

- $B^0 \to K^0_S \pi^+ \pi^-$: 4177 ± 80
- $B^0 \rightarrow K^0_S K^{\pm} \pi^{\mp}$: 421 ± 29
- $B^0 \rightarrow K^0_S K^+ K^-$: 1818 ± 49
- $B_{\rm s}^{0} \to K_{\rm S}^{0} \pi^{+} \pi^{-}$: 220 ± 22
- $B_{s}^{0} \to K_{s}^{0} K^{\pm} \pi^{\mp}$: 1668 ± 50

$B^0_{(s)} \to K^0_{\rm S} h^+ h^-$ branching fractions

• Selection separately optimised for the search for $B_s^0 \to K_S^0 K^+ K^-$ (dashed blue curve):

Yield of 19 ± 7 events (2.5 σ stat. + syst.)

- Efficiencies calculated using simulated data, using the corresponding background subtracted phase-space distributions data-driven corrections for particle ID, L0 trigger, and tracking
- Dominant systematics from the combinatorial background fit model, and the knowledge of the L0 trigger efficiencies

$B^0_{(s)} \rightarrow K^0_{\rm S} h^+ h^-$ branching fractions

Background subtracted

7 / 25

Branching fractions measured relative to $B^0 \to K_{\rm S}^0 \pi^+ \pi^-$, using the world average value (minus LHCb) of $\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-) = (4.96 \pm 0.20) \times 10^{-5}$:

$$\begin{array}{lll} \mathcal{B}(B^0 \to \overleftarrow{K}^{0}K^{\pm}\pi^{\mp}) &=& (6.1 \pm 0.5 \pm 0.7 \pm 0.3) \times 10^{-6} \,, \\ \mathcal{B}(B^0 \to K^0K^+K^-) &=& (27.2 \pm 0.9 \pm 1.6 \pm 1.1) \times 10^{-6} \,, \\ \mathcal{B}(B^0_s \to K^0\pi^+\pi^-) &=& (9.5 \pm 1.3 \pm 1.5 \pm 0.4) \times 10^{-6} \,, \\ \mathcal{B}(B^0_s \to \overleftarrow{K}^0K^{\pm}\pi^{\mp}) &=& (84.3 \pm 3.5 \pm 7.4 \pm 3.4) \times 10^{-6} \,, \\ \mathcal{B}(B^0_s \to K^0K^+K^-) &\in& [0.4 - 2.5] \times 10^{-6} \, \text{ at } 90\% \, \text{C.L.} \,, \end{array}$$

where the first uncertainty is statistical, the second systematic, and the third due to $\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$. The confidence interval for $B_s^0 \to K_s^0 K^+ K^-$ is obtained using the Feldman-Cousins method.

$\overline{\overline{B}}^0 ightarrow {\cal K}^0_{ m S} \pi^+\pi^-$ amplitude analysis

[LHCb-PAPER-2017-033, To be submitted to PRL]

- Time-integrated, untagged analysis first step towards measurements of $\beta_{\rm eff}$ in a time-dependent analysis
- B-factory measurements found evidence for negative CP-asymmetry in the decay of $\overline{B}^0 \rightarrow K^*(892)^-\pi^+$ [arXiv:1105.0125, arXiv:0905.3615, arXiv:0811.3665]
- Selection identical to the branching fraction analysis described previously
- Combinatorial background taken from sideband, $m(K_{\rm S}^0\pi^+\pi^-) > 5450$ MeV, and dominant cross-feed $(B_{\rm S}^0 \to K_{\rm S}^0 K^{\mp}\pi^{\mp})$ Dalitz-plot distribution taken from data

$\overline{B}^0 ightarrow K^0_{ m S} \pi^+ \pi^-$ time independent

• Amplitude model parameterised in terms of invariant-mass pairs $m_{K^0_{2}\pi^+}^2$ and $m_{K^0_{2}\pi^-}^2$ (s⁺ and s⁻),

$$\mathcal{A} = \sum_{j}^{N} c_j F_j (s^+, s^-),$$

Form of *F* given by:

$$F(s^+, s^-) \propto T(s^+, s^-) + Z(s^+, s^-, L) + X(s^+, s^-, L)$$

- T(s⁺, s⁻): Mass distribution in $m_{K^0_{S}\pi^{\pm}}$ or $m_{\pi^+\pi^-}$ (lineshape)
- Z(s⁺, s⁻, L): Spin term, resonance spin L (using Zemach tensors)
 proportional to Legendre polynomial
- X(s⁺, s⁻, L): Centrifugal barrier term (Blatt-Weisskopf)

$\overline{B}^0 ightarrow K^0_{ m S} \pi^+ \pi^-$ time independent

- $\cdot \ \mathcal{A}$ built by starting with those contributions identified in the B-factory analyses
- Contributions are added (or removed) depending on the likelihood, goodness of fit, or component magnitude

Resonance	Model
K*(892) ⁻	Relativistic Breit–Wigner
$(K\pi)_0$	Model from QCDF (EFKLLM, arXiv:0902.3645)
K ₂ *(1430)-	Relativistic Breit–Wigner
K*(1680) ⁻	Flatté
$f_0(500)$	Relativistic Breit–Wigner
$ ho(770)^{0}$	Gounaris–Sakurai
f ₀ (980)	Flatté
f ₀ (1500)	Relativistic Breit–Wigner
χ_{c^0}	Relativistic Breit–Wigner

• Plus a flat non-resonant contribution

$\overline{B}^0 ightarrow K^0_{ m S} \pi^+ \pi^-$ CP asymmetries

• For quasi-flavour-specific final states, the CP asymmetry from the isobar coeffcients

$$A_{\rm CP}^{\rm isobar} = \frac{|\bar{c}_j|^2 - |c_j|^2}{|\bar{c}_j|^2 + |c_j|^2}$$

is corrected for the \overline{B}^0/B^0 production asymmetry of approximately -0.35% (and the pion detection asymmetry is consistent with zero).

• Quasi-two-body branching fractions are obtained using the fit fraction of each contribution - the relative intensity if only a single component contributed

$$FF_i = \frac{\int_{\mathrm{DP}} |c_i F_i|^2 ds^+ ds^-}{\int_{\mathrm{DP}} |\sum_j c_j F_j|^2 ds^+ ds^-}.$$

$\overline{B}^0 \to K^0_S \pi^+ \pi^-$ fit projections

- Significant asymmetry in the $K^*(892)^{\pm}$ region!
- Systematic uncertainties arise from knowledge of the fit yield, the variation of the signal efficiency and background across the Dalitz plot, the fixed model parameters, modelling the S-wave components, and marginal contributions to the amplitude.

• After applying efficiency corrections (same as branching fraction analysis), and correcting for production asymmetry:

 $\mathcal{A}_{\rm CP}(\overline{B}^0 \to K^*(892)^- \pi^+) = -0.308 \pm 0.060 \pm 0.011 \pm 0.012$

- Approximately ${\bf 6}\sigma$ from zero first observation of CP violation in this mode
- Also measure $\mathcal{A}_{\rm CP}$ for other decays:

$\mathcal{A}_{CP}((K\pi)_0^{*-}\pi^+)$	=	$-\ 0.032 \pm 0.047 \pm 0.016 \pm 0.027$
$\mathcal{A}_{CP}(K_2^*(1430)^-\pi^+)$	=	$-0.29 \pm 0.22 \pm 0.09 \pm 0.03$
$\mathcal{A}_{CP}(K^*(1680)^-\pi^+)$	=	$-0.07 \pm 0.13 \pm 0.02 \pm 0.03$
$\mathcal{A}_{CP}(f_0(980)K_{\rm s}^0)$	=	$0.28 \pm 0.27 \pm 0.05 \pm 0.14$

where uncertainties are statistical, systematic (experimental) and systematic (DP model)

$\Lambda^0_b(\Xi^0_b) \longrightarrow ph^-h^+h^-$ decays

[LHCb-PAPER-2017-034, To be submitted to JHEP]

- Tree and loop contributions similar magnitude - potential for large CPV in decay
- Previous publication by LHCb on triple-product asymmetries evidence for CP violation (3.3 σ) in the decay of $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ [arXiv:1609.05216]

$\Lambda_b^0(\Xi_b^0) \rightarrow ph^-h^+h^-$ branching fractions

- Only use candidates independent of a trigger decision on signal - avoid biasing phase-space
- Simultaneous fit to all final states, constraining ($\pi \leftrightarrow K$) cross-feed
- $m(\Xi_b^0) m(\Lambda_b^0)$ constrained to the world-average value

$\Lambda_b^0(\Xi_b^0) \rightarrow ph^-h^+h^-$ branching fractions

- Background contribution from multibody *B* decays estimated by a fit to the spectrum following a proton mass hypothesis swap
- Dominant systematic uncertainty on the branching fractions arises from the variation of the efficiency across the phase-space

Branching fractions are measured relative to $\Lambda_b^0 \rightarrow \Lambda_c^+(pK^-\pi^+)\pi^-$,

$$\begin{split} \mathcal{B}(A_b^0 &\to p \pi^- \pi^+ \pi^-) &= (1.90 \pm 0.06 \pm 0.10 \pm 0.16 \pm 0.07) \cdot 10^{-5}, \\ \mathcal{B}(A_b^0 &\to p K^- \pi^+ \pi^-) &= (4.55 \pm 0.08 \pm 0.20 \pm 0.39 \pm 0.17) \cdot 10^{-5}, \\ \mathcal{B}(A_b^0 &\to p K^- K^+ \pi^-) &= (0.37 \pm 0.03 \pm 0.04 \pm 0.03 \pm 0.01) \cdot 10^{-5}, \\ \mathcal{B}(A_b^0 \to p K^- K^+ K^-) &= (1.14 \pm 0.03 \pm 0.07 \pm 0.10 \pm 0.05) \cdot 10^{-5}, \end{split}$$

where uncertainties are statistical, systematic, and from the $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ and $\Lambda_c^+ \rightarrow p K^- \pi^+$ branching fractions. Results for Ξ_b^0

$$\begin{split} & \mathcal{B}(\Xi_b^0 \to pK^-\pi^+\pi^-) \cdot f_{\Xi_b^0}/f_{A_b^0} &= (1.72 \pm 0.21 \pm 0.25 \pm 0.15 \pm 0.07) \cdot 10^{-6}, \\ & \mathcal{B}(\Xi_b^0 \to pK^-\pi^+K^-) \cdot f_{\Xi_b^0}/f_{A_b^0} &= (1.56 \pm 0.16 \pm 0.19 \pm 0.13 \pm 0.06) \cdot 10^{-6}, \\ & \mathcal{B}(\Xi_b^0 \to pK^-K^+K^-) \cdot f_{\Xi_b^0}/f_{A_b^0} \in [0.11 - 0.25] \cdot 10^{-6} \text{ at } 90 \ \% \ \text{C.L.} \end{split}$$

are a product of the branching fraction and ratio of the production fractions of Ξ_b^0 and Λ_b^0 baryons $(f_{\Xi_b^0/\Lambda_b^0})$. The interval on $\Xi_b^0 \to pK^-K^+K^-$ branching fraction is obtained using the Feldman-Cousins method.

$B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^$ time-dependent analyses

[LHCb-CONF-2016-018]

$B^0 ightarrow \pi^+\pi^-$ and $B^0_{ m s} ightarrow {\cal K}^+{\cal K}^-$ time-dependent analyses [LHCb-CONF-2016-018]

- Time-dependent measurement of CP violation in $B^0 \rightarrow \pi^+\pi^$ and $B^0_s \rightarrow K^+K^-$ using 3fb⁻¹ of data - supersedes 1fb⁻¹ LHCb measurement [arXiv:1308.1428]
- Can extract CKM angles γ and $\beta_{\rm S}$ via U-spin symmetry [arXiv:1408.4368]
- For

$$\mathcal{A}(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} = \frac{-C_f \cos(\Delta m_{d,s} t) + S_f \sin(\Delta m_{d,s} t)}{\cosh\left(\frac{\Delta \Gamma_{d,s}}{2} t\right) + A_f^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_{d,s}}{2} t\right)}$$

extract parameters corresponding to

$$C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}, \qquad S_f \equiv \frac{2 \text{Im} \lambda_f}{1 + |\lambda_f|^2}, \qquad A_f^{\Delta \Gamma} \equiv -\frac{2 \text{Re} \lambda_f}{1 + |\lambda_f|^2},$$
$$\lambda_f \equiv \frac{q}{p} \frac{\bar{A}_f}{A_f}.$$

 $B^0 o \pi^+\pi^-$ and $B^0_{
m s} o K^+K^-$ time-dependent analyses [LHCb-CONF-2016-018]

- $N(B^0 \to \pi^+\pi^-) =$ 28 652 ± 226
- $N(B^0 \to K^+K^-) =$ 36 840 ± 222
- Flavour tagging calibrated using $B_s^0 \rightarrow K^{\pm}\pi^{\mp}$ - all final states fitted simultaneously

$B^0 o \pi^+\pi^-$ and $B^0_{ m s} o K^+K^-$ time-dependent analyses [LHCb-CONF-2016-018]

$$\begin{array}{rcl} C_{\pi^+\pi^-} &=& -0.24\pm 0.07\pm 0.01,\\ S_{\pi^+\pi^-} &=& -0.68\pm 0.06\pm 0.01,\\ C_{K^+K^-} &=& 0.24\pm 0.06\pm 0.02,\\ S_{K^+K^-} &=& 0.22\pm 0.06\pm 0.02,\\ A_{K^+K^-}^{\Delta\Gamma} &=& -0.75\pm 0.07\pm 0.11, \end{array}$$

- Consistent with B-factory values most precise value of $S_{\pi^+\pi^-}$
- $(S_{K^+K^-}, C_{K^+K^-})$ differs from (0, 0) at a level of 4.6 σ
- Ongoing work to include additional ('same side') flavour taggers, update for Run 2 LHCb data, and measure CKM parameters

Search for $B^+ \rightarrow D_s^+ K^+ K^-$ decays

[LHCb-PAPER-2017-032, To be submitted to JHEP]

$B^+ \rightarrow D_{\rm s}^+ K^+ K^-$ decays

- $B^+ \rightarrow D_s^+ \phi$ proceeds primarily via annihilation diagram in SM predictions of branching fraction $\mathcal{O}(10^{-7})$
- Additional diagrams contribute in extensions to SM enhance branching fractions and/or CP asymmetries
- Update previous measurement (3.0fb^{-1}) to 4.7fb^{-1}

- Selection of ϕ enhanced with cut on helicity angle of $|\cos \theta_{hel}| > 0.4$ - background approximately uniform, efficiency of 82% for signal
- $D_s^+ \to K^+ K^- \pi^+$ used for $B^+ \to D_s^+ K^+ K^-$ search, additionally $D_s^+ \to K^+ \pi^- \pi^+$ and $D_s^+ \to \pi^+ \pi^- \pi^+$ for $B^+ \to D_s^+ \phi$

$B^+ \rightarrow D_s^+ K^+ K^-$ decays

- Total $B^+ \rightarrow D_s^+ K^+ K^-$ yield of 443 ± 29 - first observation
- $B^+ \rightarrow D_s^+ K^+ K^-$ efficiencies corrected using the background subtracted phase-space distribution, $B^+ \rightarrow D_s^+ \phi$ assumed to have no variation

• Dominant systematic uncertainties are from the knowledge of the relative efficiencies (for $B^+ \rightarrow D_s^+ K^+ K^-$), and background fit PDFs and the assumption that $B^+ \rightarrow D_s^+ K^+ K^-$ proceeds purely via $f_0(980)$ or $a_0(980)$

$B^+ \rightarrow D_s^+ K^+ K^-$ decays

- Background subtracted and efficiency corrected $m(D_s^+K^-)$ (left) and $m(K^+K^-)$ (right)
- Branching fraction measurements (normalised to $B^+ \rightarrow D_s^+ \overline{D}^0 (K^+ K^-)$):

 $\mathcal{B}(B^+ \to D_{\rm s}^+ K^+ K^-) = (7.1 \pm 0.5 \pm 0.6 \pm 0.7) \times 10^{-6}$

 $\mathcal{B}(B^+
ightarrow D_s^+ \phi) < 4.4$ (4.9) imes 10⁻⁷, at 90(5)% confidence

 Uncertainties are statistical, systematic, and on the resonance and normalisation branching fractions.

Summary

Summary

- Most precise measurements of the $B^0_{(s)} \to K^0_S h^+ h^-$ branching fractions, but are yet to observe $B^0_s \to K^0_S K^+ K^-$
- Untagged, time-integrated amplitude analysis of $\overline{B}^0 \to K^0_S \pi^+ \pi^$ performed, and CP violation observed for the first time in the decay of $\overline{B}^0 \to K^{*-}\pi^+$ at a level of 6σ
- First observations of many four-body *b*-baryon decay modes, with a large number of candidates - perfect for further investigations of CPV in baryon decays
- Updated time-dependent study of $B^0 \to \pi^+\pi^-$ and $B^0_s \to K^+K^-$ decays, with evidence for CPV in $B^0_s \to K^+K^-$ decays
- First observation of $B^+ \to D_s^+ K^+ K^-$, and limit on $\mathcal{B}(B^+ \to D_s^+ \phi)$
- Many more results on these and other topics coming soon!

Backup

$$T(m) = F(m) \left(\frac{c_0}{m^2} + c_1\right)$$

- F(m) form factors
- c_0, c_1 left free in fit (phase of one fixed here)
- Parameterises the full invariant-mass range

With
$$C_{\hat{\mathrm{T}}} = p_p \cdot (p_{h_1^-} \times p_{h_2^+})$$
, and $\overline{C}_{\hat{\mathrm{T}}} = p_{\overline{p}} \cdot (p_{h_1^+} \times p_{h_2^-})$:

$$\begin{split} A_{\widehat{T}}(C_{\widehat{T}}) &= \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)},\\ \overline{A}_{\widehat{T}}(\overline{C}_{\widehat{T}}) &= \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)}, \end{split}$$

$$a_{CP}^{\widehat{T} ext{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right),$$

• Simultaneous fit yields:

Decay mode	Signal yield	S/B	$\pm 3\sigma$ range (MeV/ $c^2)$
$\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$	1809 ± 48	4.9 ± 0.3	[5573.9, 5674.6]
$\Lambda_b^0 \to p K^- \pi^+ \pi^-$	5193 ± 76	7.7 ± 0.4	[5574.4, 5674.2]
$\Lambda_b^0 \to p K^- K^+ \pi^-$	444 ± 30	0.71 ± 0.06	[5577.4, 5671.1]
$\Lambda^0_b \to p K^- K^+ K^-$	1706 ± 46	8.1 ± 0.7	[5579.0, 5674.6]
$\Xi_b^0 \to p K^- \pi^+ \pi^-$	183 ± 22	0.59 ± 0.09	[5747.9, 5846.2]
$\Xi_b^0 \rightarrow p K^- \pi^+ K^-$	199 ± 21	0.8 ± 0.1	[5747.4, 5846.2]
$\varXi^0_b \to p K^- K^+ K^-$	27 ± 14	0.14 ± 0.08	[5752.7, 5840.8]
$\Lambda^0_b \to (\Lambda^+_c \to p K^- \pi^+) \pi^-$	16518 ± 133	-	[5573.7, 5674.8]

 $B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$ time-dependent analyses

• Time-dependent asymmetry $B^0 \rightarrow \pi^+\pi^-$ (left), $B^0_s \rightarrow K^+K^-$ (right):

$B^+ \rightarrow D_s^+ K^+ K^-$ fit categories

Production asymmetries, 8TeV

An aside on S-wave

- Accurate S-wave models very important, e.g., in $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ Dalitz-plot (from arXiv:1408.5373)
- Characteristic of CPV in interference between S and P-wave

- S-wave can be modelled using different approaches as cross-check (e.g, K-matrix, isobar model, model independent, ...)
- Experimenting with better motivated S-wave descriptions (e.g., unitarity conserving K-matrix models)