Charm CPV

[In practice: CPV, mixing and related]

Jolanta Brodzicka, INP PAS (Krakow) on behalf of LHCb

Implications Workshop
CERN, November 2017

Charm: unique, complementary but difficult

- Unique access to up-type quarks
(flavour physics with top quark limited)
- d, s, b quarks in loops: different NP particles/couplings?
\Rightarrow complementary to strange and beauty
- Loops very suppressed in charm
$\Rightarrow \mathrm{CPV}$, mixing, rare decays suppressed in SM

Needed for CPV

- b loop $\sim \mathrm{V}_{\mathrm{ub}} \mathrm{V}_{\mathrm{cb}}\left(\mathrm{m}_{\mathrm{b}} / \mathrm{m}_{\mathrm{w}}\right)^{2}$
- s \& d: GIM suppressed, cancel in U-spin limit
- Large non-perturbative corrections $\left(\sim 1 / \mathrm{m}_{\mathrm{c}}\right) \Rightarrow$ difficult to calculate

Theoretical reality, in short

- Openness of charm Unitarity Triangle \Rightarrow CPV expected in SM

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ud}}^{*} \mathrm{~V}_{\text {cd }} \sim \lambda \\
& 46 \\
& \begin{array}{l}
\beta_{c}> \\
\beta_{c} \sim 0.03^{\circ}
\end{array} \\
& B_{d}: \beta \sim 22^{\circ} \\
& B_{s}: \beta_{\mathrm{s}} \sim 1^{\circ}
\end{aligned}
$$

- Direct CPV (in decays)
- $\mathrm{O}\left(10^{-3}\right)$ in SCS decays w/ penguin contribution
- $\mathrm{O}\left(10^{-2}\right)$ wherever penguin increased: $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}} \mathrm{K}_{\mathrm{s}}, \mathrm{K}^{*} \mathrm{~K}^{*}, \varrho \gamma, \varphi \gamma$
- Indirect CPV (mixing related) $\sim \mathrm{O}\left(10^{-4}\right)$

Experimental reality, in short

HFLAV Nov2016

- $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ mixing
- established

No-mixing hypothesis excluded by $>11 \sigma$

- x still not significant
- CPV
- not observed yet
- becoming sensitive to SM
- indirect CPV precision: $\mathrm{O}\left(10^{-4}\right)$

Mixing frequencies

$$
\begin{aligned}
& x=(0.32 \pm 0.14) \% \\
& y=\left(0.6_{-0.07}^{+0.06}\right) \%
\end{aligned}
$$

Indirect CPV parameters

$$
\begin{aligned}
& |q / p|=0.89_{-0.07}^{+0.08} \\
& \phi=\arg (q / p)=-13_{-9}^{+10} \mathrm{deg} \\
& \text { CPV if }|\mathrm{q} / \mathrm{p}| \neq 1 \text { or } \phi \neq 0
\end{aligned}
$$

- direct CPV precision: down to $\mathrm{O}\left(10^{-3}\right)$
- Rare decays
- looking for signals, precision down to $\mathrm{O}\left(10^{-8}\right)$
- not there yet to go beyond (asymmetries, LFU, polarisations)

This year news

- WS/RS $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$ time evolution

Run1+Run2, prompt charm from $\mathrm{pp} \rightarrow \mathrm{D}^{* \pm \mathrm{X}}$
New

- A_{Γ} from $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}$

Run1, prompt charm
PRL 118, 261803 (2017)

- $\Delta \mathrm{A}_{\mathrm{CP}}$ for $\Lambda_{\mathrm{c}} \rightarrow \mathrm{p} \pi^{+} \pi^{-}$and $\Lambda_{\mathrm{c}} \rightarrow \mathrm{pK} \mathrm{K}^{+} \mathrm{K}^{-}$ Run1, secondary charm from $\Lambda_{b} \rightarrow \Lambda_{c} \mu v$

New

New

Mixing \& Indirect CPV

Time-evolution of (Wrong-Sign) $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$

- 2011-2016 data prompt charm

$R(t)=\frac{N_{W S}}{N_{R S}}(t) \approx R_{D}+\sqrt{R_{D}} y^{\prime} \frac{t}{\tau}+\frac{x^{\prime 2}+y^{\prime 2}}{4}\left(\frac{t}{\tau}\right)^{2}$
Decay Interference Mixing
- $\mathrm{R}^{ \pm}(\mathrm{t})$ for D from $\mathrm{D}^{* \pm} \Rightarrow$ measure CPV

WS $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$: results

- Confidence-level contours on ($\mathrm{x}^{\prime 2}, \mathrm{y}^{\prime}$)

- This study (2011-2016)

$$
\begin{gathered}
y^{\prime}=(5.28 \pm 0.45 \pm 0.27) \times 10^{-3} \\
x^{\prime 2}=(3.9 \pm 2.3 \pm 1.4) \times 10^{-5} \\
1.00<|q / p|<1.35 @ 68 \% C L
\end{gathered}
$$

- Direct CPV in DCS D ${ }^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \quad A_{C P}^{\text {direct }}=\frac{R_{D}^{+}-R_{D}^{-}}{R_{D}^{+}+R_{D}^{-}}=(-0.01 \pm 0.81 \pm 0.42) \%$

LHCb (2011-2012) PRL111, 251801 (2013)

$$
\begin{gathered}
y^{\prime}=(4.8 \pm 0.8 \pm 0.5) \times 10^{-3} \\
x^{\prime 2}=(5.5 \pm 4.2 \pm 2.6) \times 10^{-5}
\end{gathered}
$$

$$
A_{C P}^{\text {direct }}=\frac{R_{D}^{+}-R_{D}^{-}}{R_{D}^{+}+R_{D}^{-}}=(-0.01 \pm 0.81 \pm 0.42) \%
$$

PRL 118, 261803 (2017)

A_{Γ} : quest for indirect CPV

- Does mixing affect D^{0} and $\overline{\mathrm{D}}^{0}$ differently?
- Easiest access via A_{Γ}

$$
A_{\Gamma}=\frac{\tau\left(\bar{D}^{0} \rightarrow h^{+} h^{-}\right)-\tau\left(D^{0} \rightarrow h^{+} h^{-}\right)}{\tau\left(\bar{D}^{0} \rightarrow h^{+} h^{-}\right)+\tau\left(D^{0} \rightarrow h^{+} h^{-}\right)} \simeq-A_{C P}^{\text {indirect }}
$$

- Asymmetry of yields in $\mathrm{t}(\mathrm{D})$ bins: $A_{C P}(t) \simeq A_{C P}^{\text {direct }}-\mathrm{A}_{\Gamma} \frac{t}{\tau_{D}}$
- 2011+2012 data, prompt charm

A_{Γ} : entering SM area

- Sensitivity: $\mathrm{O}\left(10^{-4}\right)$

Limited by statistics

- Indirect CPV in SM $\sim 10^{-4}$
- A_{Γ} in terms of basic parameters

$$
A_{\Gamma}=\frac{1}{2}\left[\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) y \cos \phi-\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right) x \sin \phi\right]
$$

CPV
in mixing interference
\Rightarrow sensitivity to q / p depends on x

Multi-body decays are the (high)way

- Measure how phase space evolves with time [t-dep. Dalitz]
\checkmark Direct access to $\mathrm{x}, \mathrm{y},|\mathrm{q} / \mathrm{p}|, \phi$
\checkmark Access to amplitudes \& phases \Rightarrow no external input
\checkmark No dilution from coherence factor
X Need model to describe resonances
- Sensitivity from $\mathrm{D}^{0} \rightarrow \mathrm{f} \& \mathrm{D}^{0} \rightarrow \overline{\mathrm{f}}$ interferences (large 'local' coherence factors are best)

- Golden modes
- $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{s} \pi^{+} \pi^{-}$

Expect significant x with Run1+2

- $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi \pi \pi$

Needed for q / p
So far phase-space integrated study

LHCb-PAPER-2017-040

Amplitude Analysis of $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{+} \pi^{-}$(RS) \& $\mathrm{K}^{+} \pi^{-} \pi^{+} \pi^{-}$(WS)

- 2011-2012 data, D^{0} from $\mathrm{B} \rightarrow \mathrm{D}^{* \pm} \mu v$
- $1^{\text {st }}$ analysis for WS, improved for RS
- time-integrated study (ignoring D-mixing)
- RS decays $\approx \mathrm{CF} \mathrm{c} \rightarrow \mathrm{s}$ du

WS decays $\approx \mathrm{DCS} \mathrm{c} \rightarrow \mathrm{d} \bar{s} u$
\Rightarrow different dynamics

- Dominating contributions:

LHCb-PAPER-2017-040

Amplitude Analysis of $\mathrm{D}^{0} \rightarrow \mathrm{~K} \cdot \pi^{+} \pi^{+} \pi^{-}(\mathrm{RS}) \& \mathrm{~K}^{+} \pi^{\cdot} \pi^{+} \pi^{-}$(WS)

- Fit qualities:

$$
\begin{aligned}
& \text { RS } \chi^{2} / \mathrm{ndf}=40483 / 32701=1.24 \\
& \text { WS } \chi^{2} / \mathrm{ndf}=350 / 239=1.46
\end{aligned}
$$

background model uncertainty

$\mathrm{D}^{0} \rightarrow \mathrm{~K} 3 \pi$ toward mixing

- Coherence factor
(interference between DCS and CF)
$\int A_{K^{-} 3 \pi}(\mathbf{r}) A_{K^{+} 3 \pi}(\mathbf{r}) d \mathbf{r} \Rightarrow R_{\text {coh }} e^{-i \delta_{K 3 \pi}}$
- 5-dim bins of equal strong phase
- Large 'local' coherence factors

Bin	$R_{\mathrm{K} 3 \pi}$	$\delta_{\mathrm{K} 3 \pi}\left[^{\circ}\right]$
Global	0.454 ± 0.020	128
1	0.701 ± 0.017	169 ± 3
2	0.691 ± 0.016	151 ± 1
3	0.726 ± 0.010	133 ± 1
4	0.742 ± 0.008	117 ± 1
5	0.783 ± 0.005	102 ± 2
6	0.764 ± 0.007	84 ± 3
7	0.424 ± 0.013	26 ± 3
8	0.473 ± 0.030	-149 ± 7

- Add t-dependence for charm mixing \& CPV
- Sensitivity study with prompt $\mathrm{D}^{0} \rightarrow \mathrm{~K} 3 \pi$ from 2015+2016 (PhD by Dominik Müller)

Direct CPV

	LHCb	Belle		BaBar
BESIII				
Mode		$\mathbf{A}_{\mathrm{CP}}[\%]$		
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$	$+0.04 \pm 0.12 \pm 0.10$	$-0.32 \pm 0.21 \pm 0.09$	$+0.00 \pm 0.34 \pm 0.13$	
$\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}$	$+0.07 \pm 0.14 \pm 0.11$	$+0.55 \pm 0.36 \pm 0.09$	$-0.24 \pm 0.52 \pm 0.22$	
$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}}$	$-2.9 \pm 5.2 \pm 2.2$	$+0.00 \pm 1.53 \pm 0.17$		
$\mathrm{D}^{0} \rightarrow \pi^{0} \pi^{0}$		$-0.03 \pm 0.64 \pm 0.10$		
$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \eta$		$+0.54 \pm 0.51 \pm 0.16$		
$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \eta^{\prime}$		$+0.98 \pm 0.67 \pm 0.14$		
$\mathrm{D}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \mathrm{K}^{+}$	$+0.03 \pm 0.17 \pm 0.14$	$+0.08 \pm 0.28 \pm 0.14$	$+0.46 \pm 0.36 \pm 0.25$	$-1.5 \pm 2.8 \pm 1.6$
$\mathrm{D}^{+} \rightarrow \mathrm{K}_{\mathrm{L}} \mathrm{K}^{+}$				
$\mathrm{D}^{+} \rightarrow \phi \pi^{+}$	$-0.04 \pm 0.14 \pm 0.14$	$+0.51 \pm 0.28 \pm 0.05$		
$\mathrm{D}^{+} \rightarrow \eta \pi^{+}$		$+1.74 \pm 1.13 \pm 0.19$		
$\mathrm{D}^{+\rightarrow \eta^{\prime} \pi^{+}}$	$-0.61 \pm 0.72 \pm 0.55 \pm 0.12$	$-0.12 \pm 1.12 \pm 0.17$		
$\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+}$	$+0.38 \pm 0.46 \pm 0.17$	$+5.45 \pm 2.50 \pm 0.33$	$+0.3 \pm 2.0 \pm 0.3$	
$\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \eta^{\prime} \pi^{+}$	$-0.82 \pm 0.36 \pm 0.24 \pm 0.27$	http://www.slac.stanford.edu/xorg/hfag/charm		

$\Delta \mathrm{A}_{\mathrm{CP}}=\mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)-\mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)$

- Simple \& sensitive

$$
\Delta A_{C P} \simeq\left[A_{C P}^{\text {direct }}(K K)-A_{C P}^{\text {direct }}(\pi \pi)\right]+\frac{\Delta\langle t\rangle}{\tau_{D}} A_{C P}^{\text {indirect }}
$$

- In SM: $\left|\Delta \mathrm{A}_{\mathrm{CP}}{ }^{\text {direct }}\right| \leq 0.6 \%$
- HFLAV average

Prospects for direct CPV searches

Precision down bo $0\left(10^{-3}\right)$, still no evidence

- Will improve by 6-7 times with LHCb 50/fb (in ~10 years)
- Important Belle2 input: $\mathrm{D}^{0} \rightarrow \pi^{0} \pi^{0}, \mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}} \mathrm{K}_{\mathrm{S}}, \mathrm{D}^{+} \rightarrow \pi^{+} \pi^{0}$

Exploik correlations, A_{CP} not enough

- Between modes related via Isospin or U-spin
- Model independent test of SM, model dependent test of NP
- e.g. SM sum rules:

$$
\begin{aligned}
& A\left(D^{+} \rightarrow \pi^{+} \pi^{0}\right)-\bar{A}\left(D^{+} \rightarrow \pi^{+} \pi^{0}\right)=0 \\
& \frac{1}{\sqrt{2}} A\left(\pi^{+} \pi^{-}\right)+A\left(\pi^{0} \pi^{0}\right)-\frac{1}{\sqrt{2}} \bar{A}\left(\pi^{+} \pi^{-}\right)-\bar{A}\left(\pi^{0} \pi^{0}\right)=0
\end{aligned}
$$

Look ak DCS decays (strongly advertised by I.Bigi)
Explore charm baryons

- Nothing published yet!
- $1^{\text {st }}$ evidence for CPV in baryons (in $\Lambda_{\mathrm{b}} \rightarrow \mathrm{p} 3 \pi$) Nature Phys. 13, 391-396 (2017)
- Jolanta@Implications2017

$\Delta \mathrm{A}_{\mathrm{CP}}$ for $\Lambda_{\mathrm{c}} \rightarrow \mathrm{pK} \mathrm{K}^{+} \mathrm{K}^{-}$and $\Lambda_{\mathrm{c}} \rightarrow \mathrm{p} \pi^{+} \pi^{-}$

- SCS decays with penguin
- 2011-2012 data, Λ_{c} from $\Lambda_{\mathrm{b}}^{0} \rightarrow \Lambda_{\mathrm{c}}{ }^{-} \mu^{+} v$
- Global asymmetry

$$
\begin{aligned}
\Delta A_{C P} & =A_{C P}^{\mathrm{Raw}}\left(p K^{-} K^{+}\right)-A_{C P}^{\mathrm{Raw}}\left(p \pi^{-} \pi^{+}\right) \\
& \approx A_{C P}\left(p K^{-} K^{+}\right)-A_{C P}\left(p \pi^{-} \pi^{+}\right)
\end{aligned}
$$

- Asymmetries in Λ_{b} production \& detection of $\mathrm{p} / \overline{\mathrm{p}}, \mu^{-} / \mu^{+}$cancel out

$$
\Delta A_{C P}=(0.30 \pm 0.91 \pm 0.61) \%
$$

- $1^{\text {st }} \mathrm{CPV}$ measurement for charm baryons
- Systematics dominated by MC size

$$
\begin{aligned}
A_{C P}^{\mathrm{Raw}}\left(p K^{-} K^{+}\right) & =(3.72 \pm 0.78) \% \\
A_{C P}^{\mathrm{Raw}}\left(p \pi^{-} \pi^{+}\right) & =(3.42 \pm 0.47) \%
\end{aligned}
$$

More with $\Lambda_{\mathrm{c}} \rightarrow \mathrm{ph}^{+} \mathrm{h}^{-}$?

- How about $\Delta \mathrm{A}_{\mathrm{CP}}$ in Phase-Space regions?
- CPV 'localised' through resonance interferences \Rightarrow better sensitivity, but difficult interpretation
- 5D phase space, reduces to Dalitz plot if Λ_{c} unpolarised
- Rich dynamics, amplitude analysis needed

P behind CP violation

- 2\&3-body hadronic D decays: only P-even ampl. \Rightarrow CPV via C-violation
- 4-body D decays: also P-odd amplitudes $\quad \Rightarrow$ CPV via P-violation
- CPV P-even: $\mathrm{A}_{\mathrm{CP}} \sim \sin \Delta \phi_{\text {weak }} \sin \Delta \phi_{\text {strong }}$ P-odd: $\mathrm{A}_{\mathrm{CP}} \sim \sin \Delta \phi_{\text {weak }} \cos \Delta \phi_{\text {strong }}$

- $\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: P-odd CPV with 2.7σ significance ($>3 \sigma$ for some scenarios)

- P-odd: $\mathrm{D}^{0} \rightarrow \rho^{0} \rho^{0}$ in P-wave ($\sim 6 \%$)
- Increased CPV significance points to $\rho^{0} \rightarrow \pi^{+} \pi^{-}$

PLB 769 (2017) 345-356

- Λ_{c} decays: P-odd amplitudes already in 2 \& 3-body channels!

Going rare

 More by Simone Bifanion Wednesday

- The larger penguin contribution, the larger CPV

Radiative decays: there are signals to explore

- $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \mathrm{Q}^{0} \gamma\right) \leq 10 \% \quad$ de Boer, Hiller arXiv:1701.06392
- Full Belle data PRL118, 051801 (2017)

$$
\begin{array}{|l|}
A_{C P}\left(D^{0} \rightarrow \phi \gamma\right)=(-9.4 \pm 6.6 \pm 0.1) \% \\
A_{C P}\left(D^{0} \rightarrow \rho^{0} \gamma\right)=(+5.6 \pm 15.1 \pm 0.6) \%
\end{array}
$$

- LHCb Run2: at least double Belle signals

Leptonic decays: first signal!

- $\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}$
with $\mathrm{m}\left(\mu^{+} \mu^{-}\right)<525 \mathrm{MeV}$
S = 27 ± 6 (5.4σ)
PRL119, 181805 (2017)

Summary

- Pinning down the D-mixing frequencies
- Have a chance to get significant x with Run2 data
- CPV in charm still awaits discovery
- With Run2 data we are entering SM regime
- Observation first, then interpretation...
- With rare charm decays, we will take B-brother path ASAP $P_{5}{ }^{\prime}$ for $\mathrm{D} \rightarrow \mathrm{hh} \mu^{+} \mu^{-}$? In ~ 10 years...

Backups

$\Delta \mathrm{A}_{\mathrm{CP}}$ for $\Lambda_{\mathrm{c}} \rightarrow \mathrm{ph}^{+} \mathrm{h}^{-}$

- 5D phase space describing $\Lambda_{\mathrm{c}} \rightarrow \mathrm{ph}^{+} \mathrm{h}^{-}$dynamics: $\mathrm{m}^{2}\left(\mathrm{ph}^{-}\right), \mathrm{m}^{2}\left(\mathrm{~h}^{+} \mathrm{h}^{-}\right), 3$ angles in a coordinate system defined as: $\mathrm{z}: \Lambda_{\mathrm{c}}$ polarisation axis (perp. to production plane), $\mathrm{x}: \Lambda_{\mathrm{c}}$ flight direction in lab

$$
z=\hat{P}_{\Lambda_{c}^{+}}=\hat{p}_{\Lambda_{b}^{0}} \times \hat{p}_{\Lambda_{c}^{+}}
$$

$$
x=\hat{p}_{\Lambda_{c}^{+}}
$$

$\theta_{p^{\prime}} \phi_{\mathrm{p}}$: proton polar and azimuthal angles

- ϕ_{hh} : acoplanarity angle
- for unpolarised Λ_{c} PS reduces to the two inv. masses

$\Delta \mathrm{A}_{\mathrm{CP}}$ for $\Lambda_{\mathrm{c}} \rightarrow \mathrm{ph}^{+} \mathrm{h}^{-}$

- Extra asymmetries: $\quad A_{C P}^{\mathrm{Raw}}(f) \approx A_{C P}(f)+A_{P}^{\Lambda_{b}^{0}}+A_{D}^{\mu}+A_{D}^{f}$

BF of $\Lambda_{\mathrm{c}} \rightarrow \mathrm{ph}^{+} \mathrm{h}^{-}$

- 2011 data, Λ_{c} from $\Lambda_{b}^{0} \rightarrow \Lambda_{c}{ }^{-} \mu^{+} v$ (prompt charm as x-check)

$\mathrm{D}^{0} \rightarrow \mathrm{~K} 3 \pi$ Amplitude Analysis

- $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{+} \pi^{-}$(RS)

Fit Fraction [\%]

$K^{*}(892)^{0} \rho(770)^{0}$	$7.34 \pm 0.08 \pm 0.47$
$\left[K^{*}(892)^{0} \rho(770)^{0}\right]^{L=1}$	$6.03 \pm 0.05 \pm 0.25$
$\left[K^{*}(892)^{0} \rho(770)^{0}\right]^{L=2}$	$8.47 \pm 0.09 \pm 0.67$
$\rho(1450)^{0} K^{*}(892)^{0}$	$0.61 \pm 0.04 \pm 0.17$
$\left[\rho(1450)^{0} K^{*}(892)^{0}\right]^{L=1}$	$1.98 \pm 0.03 \pm 0.33$
$\left[\rho(1450)^{0} K^{*}(892)^{0}\right]^{L=2}$	$0.46 \pm 0.03 \pm 0.15$
$\rho(770)^{0}\left[K^{-} \pi^{+}\right]^{L=0}$	$0.93 \pm 0.03 \pm 0.05$
$\alpha_{3 / 2}$	$2.35 \pm 0.09 \pm 0.33$
$K^{*}(892)^{0}\left[\pi^{+} \pi^{-}\right]^{L=0}$	
$\quad f_{\pi \pi}$	$38.07 \pm 0.24 \pm 1.38$
β_{1}	$4.66 \pm 0.05 \pm 0.39$
$a_{1}(1260)^{+} K^{-}$	$1.15 \pm 0.04 \pm 0.20$
$K_{1}(1270)^{-} \pi^{+}$	$0.46 \pm 0.01 \pm 0.03$
$K_{1}(1400)^{-}\left[K^{*}(892)^{0} \pi^{-}\right] \pi^{+}$	
$K_{2}^{*}(1430)^{-}\left[K^{*}(892)^{0} \pi^{-}\right] \pi^{+}$	$0.75 \pm 0.10 \pm 0.37$
$K(1460)^{-} \pi^{+}$	$22.04 \pm 0.28 \pm 2.09$

$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{+} \pi^{-}(\mathrm{WS})$

	Fit Fraction [\%]
$K^{*}(892)^{0} \rho(770)^{0}$	$9.62 \pm 1.58 \pm 1.03$
$\left[K^{*}(892)^{0} \rho(770)^{0}\right]^{L=1}$	$8.42 \pm 0.83 \pm 0.57$
$\left[K^{*}(892)^{0} \rho(770)^{0}\right]^{L=2}$	$10.19 \pm 1.03 \pm 0.79$
$\rho(1450)^{0} K^{*}(892)^{0}$	$8.16 \pm 1.24 \pm 1.69$
$K_{1}(1270)^{+} \pi^{-}$	$18.15 \pm 1.11 \pm 2.30$
$K_{1}(1400)^{+}\left[K^{*}(892)^{0} \pi^{+}\right] \pi^{-}$	$26.55 \pm 1.97 \pm 2.13$
$\left[K^{+} \pi^{-}\right]^{L=0}\left[\pi^{+} \pi^{-}\right]^{L=0}$	$20.90 \pm 1.30 \pm 1.50$

- Strong phases vary in Phase Space \Rightarrow Local CPV asymmetries
- Model dependent: A_{CP} for resonances (amplitude analysis)
- Model independent: test data consistency with no-CPV, give p-value

Significance of asymmetry in Dalitz bins

Direct CPV in 4-body decays

- Access lo P-odd amplitudes $\Rightarrow C P V$ via P-violation [P-odd amplitude e.g. $\mathrm{D} \rightarrow \mathrm{VV}$ in P-wave]
- 2\&3-body D decays: P-even ampl. only \Rightarrow CPV via C-violation [Baryons: P-odd also in 2\&3-body decays]
- CPV in P-even ampl: $\mathrm{A}_{\mathrm{CP}} \sim \sin \Delta \phi_{\text {weak }} \sin \Delta \phi_{\text {strong }}$ P-odd ampl: $\mathrm{A}_{\mathrm{CP}} \sim \sin \Delta \phi_{\text {weak }} \cos \Delta \phi_{\text {strong }} \forall$ complementary
- Triple-product method (aka T-odd): sensitive to P-odd CPV only

Mode	$\mathbf{A}_{\mathrm{CP}}{ }^{\text {P-odd }}\left[10^{-3}\right]$	Exp	Ref	Triple product: $C_{T} \equiv \vec{p}_{1} \cdot\left(\vec{p}_{2} \times \vec{p}_{3}\right)$
$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}} \pi^{+} \pi^{-} \pi^{0}$	$-0.3 \pm 1.4^{+0.2}{ }_{-0.8}$	Belle	arXiv:1703.05721	
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \pi^{+} \pi^{-}$	$1.8 \pm 2.9 \pm 0.4$	LHCb	JHEP10 (2014) 005	
$\mathrm{D}^{+} \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}^{+} \pi^{+} \pi^{-}$	$-12 \pm 10 \pm 5$	Babar	PRD84 031103(2011)	

PRL118, 051801 (2017) PRD 93, 051102 (2016)

Decays with photon(s)

- Theory problem: LongDistance $\sim 10^{3} \times$ ShortDistance
- NP probes: $\mathrm{A}_{\mathrm{CP}}, \gamma$ polarisation (t-dep. analysis or polarised $\Lambda_{\mathrm{c}} \rightarrow \mathrm{p} \gamma$)
- Experimental problem: π^{0} background

- LHCb competitive in $\mathrm{D}^{0} \rightarrow \varrho \gamma, \phi \gamma, \mathrm{~K}^{*} \gamma$
- Belle2 dominated: $\mathrm{D}^{0} \rightarrow \gamma \gamma, \mathrm{D}^{+} \rightarrow \mathrm{Q}^{+} \gamma, \Lambda_{\mathrm{c}} \rightarrow \mathrm{p} \gamma$
- Belle2 wrt Belle: merged $\pi^{0}, \gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$conversion.
- LHCb upgrade: improved ECAL(?)

- Jolanta@Implications2017

Experimental aspects \& prospects

- t-acceptance: LHCb triggers distort prompt charm
- Prompt + sec charm \Rightarrow full coverage of decay time
- Lifetime-unbiased triggers in Run-2

- t-resolution
- good at LHCb: ~50fs
- improved at Belle2 wrt Belle: ~250fs $\rightarrow \sim 150$ fs

Experimental aspects \& prospects

- flavour tagging at $\mathrm{t}=0$. Defines charm samples

Secondary charm

- LHCb uses both; Belle prompt
- prompt/sec separation, nontrivial at LHCb

- Lifetime biasing; may need better approach

'Extra' asymmetries to account for

Production asymmetry

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma / \mathrm{Z}^{*}$ interference \Rightarrow FB asymmetry; easy to disentangle from CPV
- pp: $\sigma\left(\Lambda_{\mathrm{c}}^{+}\right)>\sigma\left(\Lambda_{\mathrm{c}}^{-}\right) \Rightarrow \sigma\left(\mathrm{D}^{+}\right)<\sigma\left(\mathrm{D}^{-}\right)$to compensate (Asym~1\%)

Debection asymmetries (K^{+}vs K^{-}, π^{+}vs π^{-})

- different interactions with detector material: $\sigma\left(\mathrm{pK}^{-}\right)>\sigma\left(\mathrm{pK}^{+}\right)$
- depend on particle momentum

From raw asymmetry to CP asymmetry

Correct with CF control modes

- Overconstrain system with additional channels
- $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)$case

- Assume no CPV in CF or include related uncertainty?

$\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ mixing \& Indirect CPV : basics

- Flavour eigenstates $\mathrm{D}^{0}[\mathrm{cu}] \overline{\mathrm{D}}^{0}[\underline{c} u] \Rightarrow$ mass eigenstates $\mathrm{D}_{1} \mathrm{D}_{2}\left[\mathrm{~m}_{1,2} \Gamma_{1,2}\right]$

$$
\left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle \quad\left|p^{2}\right|+\left|q^{2}\right|=1
$$

- Mixing frequencies x, y

$$
x=\frac{m_{2}-m_{1}}{\Gamma} \quad y=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma} \quad \Gamma=\frac{\Gamma_{1}+\Gamma_{2}}{2}
$$

- CPV related to mixing (Indirect CPV)

difficult to calculate

Wrong Sign Decays: $\mathrm{D}^{0} \rightarrow \mathrm{~K} 3 \pi$

- Rates integrated over Phase Space
\Rightarrow averaged strong phase \& coherence factor
\Rightarrow dilution of sensitivity

$$
R(t)=\frac{N_{W S}}{N_{R S}}(t) \simeq R_{D}^{K 3 \pi}+\sqrt{R_{D}^{K 3 \pi}} R_{\text {coh }} y^{\prime \prime} \frac{t}{\tau}+\frac{x^{\prime \prime 2}+y^{\prime \prime 2}}{4}\left(\frac{t}{\tau}\right)^{2}
$$

- $\mathrm{R}_{\text {coh }} \sim 0$ phase variation; $\mathrm{R}_{\text {coh }} \sim 1$ resonances in phase

$$
\begin{gathered}
\int A_{K^{-} 3 \pi}(\mathbf{r}) A_{K^{+3 \pi}}(\mathbf{r}) d \mathbf{r} \Rightarrow R_{c o h} e^{-i \delta_{K 3 \pi}} \\
R_{\text {coh } y^{\prime \prime}}=(0.3 \pm 1.8) \times 10^{-3} \\
\left(x^{\prime \prime 2}+y^{\prime \prime 2}\right) / 4=(4.8 \pm 1.8) \times 10^{-5}
\end{gathered}
$$

- Measurement w/o PS integration expected to have large sensitivity

Multibody decays：time evolution of Dalitz

\checkmark Direct access to $\mathrm{x}, \mathrm{y}, \mathrm{q} / \mathrm{p}$
x Need model to describe resonances
\checkmark Access to amplitudes \＆phases \Rightarrow no external input
\checkmark No dilution from coherence factor

$$
\begin{array}{rll}
\mathcal{P} & {\left[D^{0}(\text { Dalitz; })\right] \propto e^{-\Gamma t}\left\{\left|A_{f}\right|^{2}[\cosh (y \Gamma t)+\cos (x \Gamma t)]\right.} & \text { 世decay } \mathbb{D}^{0} \rightarrow f \\
& +\left|\frac{q}{p} \bar{A}_{f}\right|^{2}[\cosh (y \Gamma t)-\cos (x \Gamma t)] & \text { 世mixing } D^{0} \rightarrow \bar{D}^{0} \rightarrow f \\
& \left.-2 \Re\left(\frac{q}{p} A_{f}^{*} \bar{A}_{f}\right) \sinh (y \Gamma t)-2 \Im\left(\frac{q}{p} A_{f}^{*} \bar{A}_{f}\right) \sin (x \Gamma t)\right\} & \text { 世interference of both }
\end{array}
$$

－Sensitivity depends on resonance interference

PRD89 091103 (2014)

Dalitz (t) of $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{S} \pi^{+} \pi^{-}$golden mode

- Large statistics and rich dynamics
- Significant $\mathrm{D}^{0} \rightarrow \mathrm{f} \& \mathrm{D}^{0} \rightarrow \overline{\mathrm{f}}$ interferences
- Most precise x so far

$$
\begin{aligned}
& x=\left(0.56 \pm 0.19_{-0.08}^{+0.04+0.06}\right) \% \quad y=\left(0.30 \pm 0.15_{-0.05}^{+0.04}+0.0 .07\right. \\
& |q / p|=0.90_{-0.15}^{+0.16+0.05}+0.04 \\
& \mid-0.05
\end{aligned} \phi=\left(-6 \pm 11 \pm 3_{-4}^{+3}\right)^{\circ} .
$$

- Belle: 1.2M signal events

- LHCb: 2M in Run1. Significant x with Run1+2?
$\mathrm{m}^{2}\left(\mathrm{~K}_{\mathrm{s}} \pi^{-}\right)$

A.Davis @ $6^{\text {th }}$ Implications Workshop

A.Schwart @ Charm2016Future of mixing \& ICPV

- Dominated by LHCb
- Significant x with Run1+2?

- Belle: includes irreducible syst
- Jolanta@Implications2017

PRL118, 051801 (2017)
 $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{*} \gamma, \varphi \gamma, \mathrm{Q}^{0} \gamma: \mathrm{BF} \& \mathrm{~A}_{\mathrm{CP}}$

- BF's poorly measured. No CPV analysis before - Large CPV within SM, up to a few \%
- First observation of $\mathrm{D}^{0} \rightarrow \mathrm{Q}(770) \gamma$

$$
\begin{gathered}
\mathcal{B}\left(D^{0} \rightarrow \bar{K}^{* 0} \gamma\right)=(4.66 \pm 0.21 \pm 0.18) \times 10^{-4} \\
\mathcal{B}\left(D^{0} \rightarrow \phi \gamma\right)=(2.76 \pm 0.20 \pm 0.08) \times 10^{-5} \\
\mathcal{B}\left(D^{0} \rightarrow \rho^{0} \gamma\right)=(1.77 \pm 0.30 \pm 0.08) \times 10^{-5} \\
\hline
\end{gathered}
$$

$$
A_{C P}\left(D^{0} \rightarrow \bar{K}^{* 0} \gamma\right)=(-0.3 \pm 2.0 \pm 0.0) \%
$$

$A_{C P}\left(D^{0} \rightarrow \bar{K}^{* 0} \gamma\right)=(-0.3 \pm 2.0 \pm 0.0) \%$
$A_{C P}\left(D^{0} \rightarrow \phi \gamma\right)=(-9.4 \pm 6.6 \pm 0.1) \%$
$A_{C P}\left(D^{0} \rightarrow \rho^{0} \gamma\right)=(+5.6 \pm 15.1 \pm 0.6) \%$

$$
A_{C P}\left(D^{0} \rightarrow \phi \gamma\right)=(-9.4 \pm 6.6 \pm 0.1) \%
$$

$$
A_{C P}\left(D^{0} \rightarrow \rho^{0} \gamma\right)=(+5.6 \pm 15.1 \pm 0.6) \%
$$

PLB 767 (2017) 177-187

$$
\stackrel{{ }^{177} \mathrm{~A}_{\mathrm{CP}}}{ }\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right) \& \mathrm{~A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)
$$

- Individual $\mathrm{A}_{\mathrm{CP}}(\mathrm{KK})$, pion-tagged sample

$$
A_{C P}\left(K^{+} K^{-}\right)=(0.14 \pm 0.15 \pm 0.10) \%
$$

- Combine with $\Delta \mathrm{A}_{\mathrm{CP}} \Rightarrow$

$$
A_{C P}\left(\pi^{+} \pi^{-}\right)=A_{C P}\left(K^{+} K^{-}\right)-\Delta A_{C P}=(0.24 \pm 0.15 \pm 0.11) \%
$$

- Combine with results from muon-tagged sample JHEP07, 041 (2014)
\Rightarrow LHCb combination
- Both A_{CP} 's consistent with zero

Search for CPV in $\mathrm{D}^{0} \rightarrow 4 \pi$ with Energy Test

- Statistical comparison of two distributions
- Test statistics: based on distances of event pairs
- Compare with T distribution for no CPV case (randomize D flavour)
- 5-dim phase space: $\mathrm{m}^{2}(\pi \pi), \mathrm{m}^{2}(\pi \pi \pi) \Rightarrow \mathbf{P}$-even
- Use triple-product sign to access P-odd CPV

- Jolanta@Implications2017

Marginally consistent with no CPV (~2.7 $)$

$$
\begin{array}{c|c}
\text { II } & \text { IV }^{\mathrm{D} \mathrm{C}_{\mathrm{T}}<0} \\
\mathrm{D}-\overline{\mathrm{C}}_{\mathrm{T}}<0
\end{array}
$$

$$
C_{T} \equiv \vec{p} \pi^{+} \cdot\left(\vec{p} \pi^{+} \times \vec{p} \pi^{-}\right)
$$

$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi \pi$, t-dep. Dalitz, model independent

- $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{s} \pi \pi$ is a golden mode for mixing
- Binned approach to Dalitz
- Strong phases \& fractions from Cleo-c
- Fit $\mathrm{t}(\mathrm{D})$ with data driven acceptance

$$
\begin{aligned}
& x=(-0.86 \pm 0.53 \pm 0.17) \% \\
& y=(+0.03 \pm 0.46 \pm 0.13) \% \\
& \tau_{D}=(410.9 \pm 1.1) \mathrm{fs}
\end{aligned}
$$

- This is with 2011 data: 180K signal K_{S} decayed inside vertex detector
- Ongoing for 2012 data: ~2M prompt+sec Also K_{S} decayed outside vertex detector

Belle: 1.2M signal

$$
\begin{gathered}
x=\left(0.56 \pm 0.19_{-0.08-0.08}^{+0.04}+0.06\right. \\
y=\left(0.30 \pm 0.15_{-0.05-0.07}^{+0.04+0.03}\right) \% \\
\text { PRD89 } 091103(2014)
\end{gathered}
$$

