Charm CPV

[In practice: CPV, mixing and related]

Jolanta Brodzicka, INP PAS (Krakow) on behalf of LHCb

Implications Workshop CERN, November 2017

Charm: unique, complementary but difficult

- Unique access to up-type quarks (flavour physics with top quark limited)
- d, s, b quarks in loops: different NP particles/couplings?
 ⇒ complementary to strange and beauty
- Loops very suppressed in charm
 ⇒ CPV, mixing, rare decays suppressed in SM

• Large non-perturbative corrections (~1/m_c) ⇒ difficult to calculate

Theoretical reality, in short

• Openness of charm Unitarity Triangle ⇒ CPV expected in SM

- Direct CPV (in decays)
 - O(10⁻³) in SCS decays w/ penguin contribution
 - O(10⁻²) wherever penguin increased: $D^0 \rightarrow K_S K_S$, $K^{*0} K^{*0}$, $\varrho\gamma$, $\varphi\gamma$
- Indirect CPV (mixing related) ~O(10⁻⁴)

Experimental reality, in short

- D⁰-D⁰ mixing
 - established

No-mixing hypothesis excluded by >11 σ

- x still not significant
- CPV
 - not observed yet
 - becoming sensitive to SM
 - indirect CPV precision: O(10⁻⁴)
 - direct CPV precision: down to O(10⁻³)
- Rare decays
 - looking for signals, precision down to O(10⁻⁸)
 - not there yet to go beyond (asymmetries, LFU, polarisations)

HFLAV Nov2016

Mixing frequencies

$$x = (0.32 \pm 0.14)\%$$

$$y = (0.69^{+0.06}_{-0.07})\%$$

Indirect CPV parameters

$$|q/p| = 0.89^{+0.08}_{-0.07}$$

 $\phi = \arg(q/p) = -13^{+10}_{-9} \deg$

This year news

- WS/RS $D^0 \rightarrow K\pi$ time evolution Run1+Run2, prompt charm from $pp \rightarrow D^{*\pm}X$ New
- A_{Γ} from $D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$ Run1, prompt charm PRL 118, 261803 (2017)
- ΔA_{CP} for $\Lambda_c \rightarrow p\pi^+\pi^-$ and $\Lambda_c \rightarrow pK^+K^-$ Run1, secondary charm from $\Lambda_b \rightarrow \Lambda_c \mu v$ New
- Amplitude Analysis of $D^0 \rightarrow K^{\pm} \pi \pi \pi$, Run1, secondary charm from $B \rightarrow D^{*\pm} \mu \upsilon$ New

Mixing & Indirect CPV

LHCB-PAPER-2017-046

Time-evolution of (Wrong-Sign) $D^0 \rightarrow K^+ \pi^-$

WS $D^0 \rightarrow K^+ \pi^-$: results

• Confidence-level contours on (x'^2, y')

$$x'^2 = (5.5 \pm 4.2 \pm 2.6) \times 10^{-5}$$

• Direct CPV in DCS $D^0 \rightarrow K^+ \pi^- A_{CP}^{direct} = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-} = (-0.01 \pm 0.81 \pm 0.42)\%$

• Jolanta@Implications2017

 $x^{\prime 2} = (3.9 \pm 2.3 \pm 1.4) \times 10^{-5}$

 $1.00 < |q/p| < 1.35 \ @68\% \ CL$

PRL 118, 261803 (2017)

A_{Γ} : quest for indirect CPV

SCS

 \mathcal{D}^{O}

 au_D

Mix

CP-eigen. K+K-, n+n-

- Does mixing affect D^0 and D^0 differently?
- Easiest access via A_{Γ}

$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \to h^+ h^-) - \tau(D^0 \to h^+ h^-)}{\tau(\overline{D}^0 \to h^+ h^-) + \tau(D^0 \to h^+ h^-)} \simeq -A_{CP}^{\text{indirect}}$$

Asymmetry of yields in t(D) bins: $|A_{CP}(t) \simeq A_{CP}^{\text{direct}} - \mathbf{A}_{\Gamma}^{-\iota}$

A_{Γ} : entering SM area

Multi-body decays are the (high)way

- Measure how phase space evolves with time [t-dep. Dalitz]
- \checkmark Direct access to x, y, |q/p|, ϕ $m^2(K_S\pi^+)$ ✓ Access to amplitudes & phases ⇒ no external input ✓ No dilution from coherence factor X Need model to describe resonances
- Sensitivity from $D^0 \rightarrow f \& D^0 \rightarrow \overline{f}$ interferences (large 'local' coherence factors are best)
- Golden modes
- $D^0 \rightarrow K_S \pi^+ \pi^-$ Expect significant x with Run1+2
- $D^0 \rightarrow K \pi \pi \pi$

WS/RS Needed for q/p So far phase-space integrated study

LHCb-PAPER-2017-040

Amplitude Analysis of $D^0 \rightarrow K^- \pi^+ \pi^- (RS) \& K^+ \pi^- \pi^+ \pi^- (WS)$

WS decays \approx DCS c \rightarrow dsu

- 2011-2012 data, D^0 from $B \rightarrow D^{*\pm}\mu v$
- 1st analysis for WS, improved for RS
- time-integrated study (ignoring D-mixing)
- RS decays ≈ CF c→sdu
 ⇒ different dynamics
- Dominating contributions:

LHCb-PAPER-2017-040

Amplitude Analysis of $D^0 \rightarrow K^- \pi^+ \pi^- (RS) \& K^+ \pi^- \pi^+ \pi^- (WS)$

Fit qualities: RS χ^2 /ndf = 40483/32701 = 1.24 WS χ^2 /ndf = 350/239 = 1.46

Jolanta@Implications2017

background model uncertainty

$D^0 \rightarrow K3\pi$ toward mixing

 Coherence factor (interference between DCS and CF)

$$\int A_{K^{-}3\pi}(\mathbf{r})A_{K^{+}3\pi}(\mathbf{r})\,d\mathbf{r} \Rightarrow R_{coh}e^{-i\delta_{K3\pi}}$$

- 5-dim bins of equal strong phase
- Large 'local' coherence factors
- Add t-dependence for charm mixing & CPV
- Sensitivity study with prompt D⁰→K3π from 2015+2016 (PhD by Dominik Müller)

• Jolanta@Implications2017

Bin	$R_{{ m K}3\pi}$	$\delta_{\mathrm{K}3\pi}[^{\mathrm{o}}]$	
Global	0.454 ± 0.020	128	
1	0.701 ± 0.017	169 ± 3	
2	0.691 ± 0.016	151 ± 1	2
3	0.726 ± 0.010	133 ± 1	reli
4	0.742 ± 0.008	117 ± 1	ED.
5	0.783 ± 0.005	102 ± 2	har
6	0.764 ± 0.007	84 ± 3	52
7	0.424 ± 0.013	26 ± 3	
8	0.473 ± 0.030	-149 ± 7	

Direct CPV

Most precise Very importantA_{CP} in two-body decays w/ penguin

	LHCb	Belle	BaBar	BESIII
Mode	A _{CP} [%]			
$D^0 \rightarrow K^+ K^-$	$+0.04 \pm 0.12 \pm 0.10$	$-0.32 \pm 0.21 \pm 0.09$	$+0.00 \pm 0.34 \pm 0.13$	
$D^0 \rightarrow \pi^+ \pi^-$	$+0.07 \pm 0.14 \pm 0.11$	$+0.55 \pm 0.36 \pm 0.09$	$-0.24 \pm 0.52 \pm 0.22$	
$D^0 \rightarrow K_s K_s$	$-2.9 \pm 5.2 \pm 2.2$	$+0.00 \pm 1.53 \pm 0.17$		
$D^0 \rightarrow \pi^0 \pi^0$		$-0.03 \pm 0.64 \pm 0.10$		
$D^0 \rightarrow K_s \eta$		$+0.54 \pm 0.51 \pm 0.16$		
$D^0 \rightarrow K_s \eta'$		$+0.98 \pm 0.67 \pm 0.14$		
$D^+ \rightarrow K_s K^+$	$+0.03 \pm 0.17 \pm 0.14$	$+0.08 \pm 0.28 \pm 0.14$	$+0.46 \pm 0.36 \pm 0.25$	$-1.5 \pm 2.8 \pm 1.6$
$D^+ \rightarrow K_L K^+$				$-3.0 \pm 3.2 \pm 1.2$
$D^+ \rightarrow \varphi \pi^+$	$-0.04 \pm 0.14 \pm 0.14$	$+0.51 \pm 0.28 \pm 0.05$		
$D^+ \rightarrow \eta \pi^+$		$+1.74 \pm 1.13 \pm 0.19$		
$D^+ \rightarrow \eta' \pi^+$	$-0.61 \pm 0.72 \pm 0.55 \pm 0.12$	$-0.12 \pm 1.12 \pm 0.17$		
$D_s^+ \rightarrow K_s \pi^+$	$+0.38 \pm 0.46 \pm 0.17$	$+5.45 \pm 2.50 \pm 0.33$	$+0.3 \pm 2.0 \pm 0.3$	
$D_s^+ \rightarrow \eta' \pi^+$	$-0.82 \pm 0.36 \pm 0.24 \pm 0.27$	http://www	v.slac.stanford.edu/>	korg/hfag/charm

 $\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+ K^-) - A_{CP}(D^0 \rightarrow \pi^+ \pi^-)$

- Simple & sensitive $\Delta A_{CP} \simeq \left[A_{CP}^{\text{direct}}(KK) A_{CP}^{\text{direct}}(\pi\pi) \right] + \frac{\Delta \langle t \rangle}{\tau_{P}} A_{CP}^{\text{indirect}}$
- In SM: $|\Delta A_{CP}^{direct}| \le 0.6\%$

Prospects for direct CPV searches

Precision down to $O(10^{-3})$, still no evidence

- Will improve by 6-7 times with LHCb 50/fb (in ~10 years)
- Important Belle2 input: $D^0 \rightarrow \pi^0 \pi^0$, $D^0 \rightarrow K_S K_S$, $D^+ \rightarrow \pi^+ \pi^0$

Exploit correlations, A_{CP} not enough

- Between modes related via Isospin or U-spin
- Model independent test of SM, model dependent test of NP

• e.g. SM sum rules:

$$\begin{aligned}
A\left(D^+ \rightarrow \pi^+ \pi^0\right) - \overline{A}\left(D^+ \rightarrow \pi^+ \pi^0\right) &= 0 \\
\frac{1}{\sqrt{2}} A\left(\pi^+ \pi^-\right) + A\left(\pi^0 \pi^0\right) - \frac{1}{\sqrt{2}} \overline{A}\left(\pi^+ \pi^-\right) - \overline{A}\left(\pi^0 \pi^0\right) &= 0
\end{aligned}$$

Look at DCS decays (strongly advertised by I.Bigi)

Explore charm baryons

- Nothing published yet!
- 1st evidence for CPV in baryons (in $\Lambda_b \rightarrow p3\pi$)

Jolanta@Implications2017

Nature Phys. 13, 391-396 (2017)

LHCb-PAPER-2017-044

ΔA_{CP} for $\Lambda_c \rightarrow pK^+K^-$ and $\Lambda_c \rightarrow p\pi^+\pi^-$

- SCS decays with penguin
- 2011-2012 data, Λ_c from $\Lambda_b^0 \rightarrow \Lambda_c^- \mu^+ \upsilon$
- Global asymmetry

$$\Delta A_{CP} = A_{CP}^{\text{Raw}}(pK^-K^+) - A_{CP}^{\text{Raw}}(p\pi^-\pi^+)$$
$$\approx A_{CP}(pK^-K^+) - A_{CP}(p\pi^-\pi^+)$$

Asymmetries in Λ_b production
 & detection of p/p, μ⁻/μ⁺ cancel out

 $\Delta A_{CP} = (0.30 \pm 0.91 \pm 0.61)\%$

- 1st CPV measurement for charm baryons
- Systematics dominated by MC size

 $A_{CP}^{\text{Raw}}(pK^{-}K^{+}) = (3.72 \pm 0.78) \%$ $A_{CP}^{\text{Raw}}(p\pi^{-}\pi^{+}) = (3.42 \pm 0.47) \%$

More with $\Lambda_c \rightarrow ph^+h^-?$

- How about ΔA_{CP} in Phase-Space regions?
- CPV 'localised' through resonance interferences ⇒ better sensitivity, but difficult interpretation
- 5D phase space, reduces to Dalitz plot if Λ_c unpolarised
- Rich dynamics, amplitude analysis needed
- For now BF's for SCS and DCS decays $\frac{\mathcal{B}(\Lambda_c^+ \to pK^-K^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (1.70 \pm 0.03 \pm 0.03) \%,$ $\frac{\mathcal{B}(\Lambda_c^+ \to p\pi^-\pi^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (7.44 \pm 0.08 \pm 0.18) \%,$ $\frac{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (0.165 \pm 0.015 \pm 0.005) \%,$ arXiv:1711.01157

P behind CP violation

- 2&3-body hadronic D decays: only P-even ampl. ⇒ CPV via C-violation
- 4-body D decays: also P-odd amplitudes ⇒ CPV via P-violation
- CPV P-even: $A_{CP} \sim \sin \Delta \phi_{weak} \sin \Delta \phi_{strong}$ P-odd: $A_{CP} \sim \sin \Delta \phi_{weak} \cos \Delta \phi_{strong}$ Complementary

• $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: P-odd CPV with 2.7 σ significance (>3 σ for some scenarios)

- P-odd: $D^0 \rightarrow \rho^0 \rho^0$ in P-wave (~6%)
- Increased CPV significance points to $\rho^0 \rightarrow \pi^+ \pi^-$

PLB 769 (2017) 345-356

• Λ_c decays: P-odd amplitudes already in 2 & 3-body channels!

Jolanta@Implications2017

Going rare

More by Simone Bifani on Wednesday

The larger penguin contribution, the larger CPV

Radiative decays: there are signals to explore

- $A_{CP}(D^0 \rightarrow q^0 \gamma) \le 10\%$ de Boer, Hiller arXiv:1701.06392
- Full Belle data PRL118, 051801 (2017)

 $A_{CP}(D^0 \to \phi \gamma) = (-9.4 \pm 6.6 \pm 0.1)\%$ $A_{CP}(D^0 \to \rho^0 \gamma) = (+5.6 \pm 15.1 \pm 0.6)\%$

• LHCb Run2: at least double Belle signals

Leptonic decays: first signal!

• $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^$ with m($\mu^+ \mu^-$)< 525 MeV S = 27±6 (5.4 σ)

PRL119, 181805 (2017)

Jolanta@Implications2017

$$D^{0}$$

•22

Summary

- Pinning down the D-mixing frequencies
- Have a chance to get significant x with Run2 data
- CPV in charm still awaits discovery
- With Run2 data we are entering SM regime
- Observation first, then interpretation...
- With rare charm decays, we will take B-brother path ASAP P_5' for D \rightarrow hh $\mu^+\mu^-$? In ~10 years...

Backups

•

ΔA_{CP} for $\Lambda_c \rightarrow ph^+h^-$

5D phase space describing $\Lambda_c \rightarrow ph^+h^-$ dynamics: $m^{2}(ph^{-})$, $m^{2}(h^{+}h^{-})$, 3 angles in a coordinate system defined as: z: Λ_c polarisation axis (perp. to production plane), x: Λ_c flight direction in lab

 θ_{p}, ϕ_{p} : proton polar and azimuthal angles

 ϕ_{hh} : acoplanarity angle for unpolarised Λ_c PS reduces to the two inv. masses

ΔA_{CP} for $\Lambda_c \rightarrow ph^+h^-$

• Extra asymmetries: $A_{CP}^{\mathsf{Raw}}(f) \approx A_{CP}(f) + A_{P}^{\Lambda_{b}^{0}} + A_{D}^{\mu} + A_{D}^{f}$

Jolanta@implicationszut/

BF of $\Lambda_c \rightarrow ph^+h^-$

• 2011 data, Λ_c from $\Lambda_b^0 \rightarrow \Lambda_c^- \mu^+ \upsilon$ (prompt charm as x-check)

$D^0 \rightarrow K3\pi$ Amplitude Analysis

• $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	(RS)	$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^- (WS)$	
	Fit Fraction $[\%]$		
$K^*(892)^0 \rho(770)^0$	$7.34 \pm 0.08 \pm 0.47$	·	Fit Fraction [%]
$\left[K^*(892)^0\rho(770)^0\right]^{L=1}$	$6.03 \pm 0.05 \pm 0.25$	$K^*(892)^0 ho(770)^0$	$9.62 \pm 1.58 \pm 1.03$
$[K^*(892)^0\rho(770)^0]^{L=2}$	$8.47 \pm 0.09 \pm 0.67$	$[K^*(892)^0\rho(770)^0]^{L=1}$	$8.42 \pm 0.83 \pm 0.57$
$\rho(1450)^0 K^*(892)^0$	$0.61 \pm 0.04 \pm 0.17$	$[K^*(892)^0\rho(770)^0]^{L=2}$	$10.19 \pm 1.03 \pm 0.79$
$\left[\rho(1450)^0 K^*(892)^0\right]^{L=1}$	$1.98 \pm 0.03 \pm 0.33$	$ ho(1450)^0 K^*(892)^0$	$8.16 \pm 1.24 \pm 1.69$
$\left[\rho(1450)^0 K^*(892)^0\right]^{L=2}$	$0.46 \pm 0.03 \pm 0.15$	$K_1(1270)^+\pi^-$	$18.15 \pm 1.11 \pm 2.30$
$\rho(770)^0 \left[K^- \pi^+\right]^{L=0}$	$0.93 \pm 0.03 \pm 0.05$	$K_1(1400)^+ [K^*(892)^0\pi^+]\pi^-$	$26.55 \pm 1.97 \pm 2.13$
$\kappa_{3/2}^{\alpha_{3/2}} K^* (892)^0 \left[\pi^+ \pi^-\right]^{L=0}_{f}$	$2.35 \pm 0.09 \pm 0.33$	$\left[K^{+}\pi^{-}\right]^{L=0}\left[\pi^{+}\pi^{-}\right]^{L=0}$	$20.90 \pm 1.30 \pm 1.50$
$\beta_1^{\pi\pi}$			
$a_1(1260)^+K^-$	$38.07 \pm 0.24 \pm 1.38$		
$K_1(1270)^-\pi^+$	$4.66 \pm 0.05 \pm 0.39$		
$K_1(1400)^- [K^*(892)^0\pi^-]\pi^+$	$1.15 \pm 0.04 \pm 0.20$		
$K_2^*(1430)^- [K^*(892)^0\pi^-]\pi^+$	$0.46 \pm 0.01 \pm 0.03$		
$K(1460)^{-}\pi^{+}$	$3.75 \pm 0.10 \pm 0.37$		
$[K^{-}\pi^{+}]^{L=0} [\pi^{+}\pi^{-}]^{L=0}$	$22.04 \pm 0.28 \pm 2.09$	-	
 Jolanta@Implications2017 			•28

PLB 728 (2014) 585 PLB 740 (2015) 158 Direct CPV in multibody decays

- Strong phases vary in Phase Space ⇒ local CPV asymmetries
- Model dependent: A_{CP} for resonances (amplitude analysis)
- Model independent: test data consistency with no-CPV, give p-value binned χ^2 (S_{CP} method) unbinned (Energy Test) $D^+ \rightarrow \pi^+ \pi^- p$ -value = 50÷100% $D^0 \rightarrow \pi^+ \pi^- \pi^0$ p-value = 2÷5% S_{CF}^{+} $m^2(\pi^-\pi^0)$ [GeV²/ c^4 Significance LHCb

0 'n

 $m^2(\pi^+\pi^0)$ [GeV²/ c^4]

2

(b)

-1

-2

-3

3

Direct CPV in 4-body decays

- Access to P-odd amplitudes ⇒ CPV via P-violation
 [P-odd amplitude e.g. D→VV in P-wave]
- 2&3-body D decays: P-even ampl. only ⇒ CPV via C-violation [Baryons: P-odd also in 2&3-body decays]
- CPV in P-even ampl: $A_{CP} \sim \sin \Delta \phi_{weak} \sin \Delta \phi_{strong}$ P-odd ampl: $A_{CP} \sim \sin \Delta \phi_{weak} \cos \Delta \phi_{strong}$ Complementary
- Triple-product method (aka T-odd): sensitive to P-odd CPV only

Mode	A _{CP} ^{P-odd} [10 ⁻³]	Exp	Ref
$D^0 \rightarrow K_S \pi^+ \pi^- \pi^0$	-0.3 $\pm 1.4^{+0.2}_{-0.8}$	Belle	arXiv:1703.05721
$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$	$1.8\pm2.9\pm0.4$	LHCb	JHEP10 (2014) 005
$D^+ \rightarrow K_S K^+ \pi^+ \pi^-$	$-12 \pm 10 \pm 5$	Babar	PRD84 031103(2011)

Jolanta@Implications2017

Triple product: $C_T \equiv \vec{p}_1 \cdot (\vec{p}_2 \times \vec{p}_3)$

PRL 118, 051801 (2017) PRD 93, 051102 (2016) Decays with photon(s)

- Theory problem: LongDistance ~ 10³ × ShortDistance
- NP probes: A_{CP} , γ polarisation (t-dep. analysis or polarised $\Lambda_c \rightarrow p\gamma$)
- Experimental problem: π^0 background

- LHCb competitive in $D^0 \rightarrow \varrho \gamma$, $\varphi \gamma$, $K^* \gamma$
- Belle2 dominated: $D^0 \rightarrow \gamma \gamma$, $D^+ \rightarrow \varrho^+ \gamma$, $\Lambda_c \rightarrow p \gamma$
- Belle2 wrt Belle: merged π^0 , $\gamma \rightarrow e^+e^-$ conversion.
- LHCb upgrade: improved ECAL(?)
 Jolanta@Implications2017

$$A_{CP}(D^{0} \to \overline{K}^{*0}\gamma) = (-0.3 \pm 2.0 \pm 0.0)\%$$

$$A_{CP}(D^{0} \to \phi\gamma) = (-9.4 \pm 6.6 \pm 0.1)\%$$

$$A_{CP}(D^{0} \to \rho^{0}\gamma) = (+5.6 \pm 15.1 \pm 0.6)\%$$

No CPV

Experimental aspects & prospects

- **t-acceptance**: LHCb triggers distort prompt charm
- Prompt + sec charm ⇒ full coverage of decay time
- Lifetime-unbiased triggers in Run-2

- t-resolution
- good at LHCb: ~50fs
- improved at Belle2 wrt Belle: ~250fs →~150fs

Experimental aspects & prospects

• **flavour tagging** at t=0. Defines charm samples

- LHCb uses both; Belle prompt
- **prompt/sec separation**, nontrivial at LHCb

Lifetime biasing; may need better approach
Jolanta@Implications2017

'Extra' asymmetries to account for

Production asymmetry

- e⁺e⁻→γ/Z^{*} interference ⇒ FB asymmetry; easy to disentangle from CPV
- pp: $\sigma(\Lambda_c^+) > \sigma(\Lambda_c^-) \Rightarrow \sigma(D^+) < \sigma(D^-)$ to compensate (Asym~1%)

Detection asymmetries ($K^+ vs K^-$, $\pi^+ vs \pi^-$)

- different interactions with detector material: σ(pK⁻) > σ(pK⁺)
- depend on particle momentum

From raw asymmetry to CP asymmetry

Correct with CF control modes

- Overconstrain system with additional channels
- $A_{CP}(D^0 \rightarrow K^+K^-)$ case

• Assume no CPV in CF or include related uncertainty?

Jolanta@Implications2017

D⁰-D⁰ mixing & Indirect CPV: basics

• Flavour eigenstates $D^0[cu] \overline{D}^0[\underline{c}u] \Rightarrow$ mass eigenstates $D_1 D_2[m_{1,2} \Gamma_{1,2}]$

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle |p^2| + |q^2| = 1$$

• Mixing frequencies x, y

$$x = \frac{m_2 - m_1}{\Gamma} \quad y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma} \quad \Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$$

• CPV related to mixing (Indirect CPV)

 $|q/p| \neq 1$ $\phi = \arg(q/p) \neq 0$

• SM:

x, y ~O(10⁻²) with large uncertainty Indirect CPV universal, ~10⁻⁴

difficult to calculate

PRL116, 241801 (2016)

Wrong Sign Decays: $D^0 \rightarrow K3\pi$

- Rates integrated over Phase Space
- ⇒ averaged strong phase & coherence factor
- \Rightarrow dilution of sensitivity

$$R(t) = \frac{N_{WS}}{N_{RS}}(t) \simeq R_D^{K3\pi} + \sqrt{R_D^{K3\pi}} R_{coh} y'' \frac{t}{\tau} + \frac{x''^2 + y''^2}{4} \left(\frac{t}{\tau}\right)^2$$

$$\begin{array}{ccc} DCS \\ D^0 & WS & K^+ 3\pi \\ Mix & CF & K^+ \pi^- \pi^0 \\ \overline{D}^0 \end{array}$$

•
$$R_{coh} \sim 0$$
 phase variation; $R_{coh} \sim 1$ resonances in phase

$$\int A_{K^{-}3\pi}(\mathbf{r}) A_{K^{+}3\pi}(\mathbf{r}) d\mathbf{r} \Rightarrow R_{coh} e^{-i\delta_{K3\pi}} \qquad \begin{array}{c} 6 \\ 5.5 \end{array}$$

 $R_{coh}y'' = (0.3 \pm 1.8) \times 10^{-3}$ $(x''^2 + y''^2)/4 = (4.8 \pm 1.8) \times 10^{-5}$

 Measurement w/o PS integration expected to have large sensitivity

Multibody decays: time evolution of Dalitz

✓ Direct access to x, y, q/p

X Need model to describe resonances

✓ Access to amplitudes & phases ⇒ no external input
 ✓ No dilution from coherence factor

$$\mathcal{P}\left[D^{0}(Dalitz;t)\right] \propto e^{-\Gamma t} \left\{ |A_{f}|^{2} \left[\cosh\left(y\Gamma t\right) + \cos\left(x\Gamma t\right)\right] \right\} \\ \left. + \left|\frac{q}{p}\overline{A}_{f}\right|^{2} \left[\cosh\left(y\Gamma t\right) - \cos\left(x\Gamma t\right)\right] \\ \left. - 2\Re\left(\frac{q}{p}A_{f}^{*}\overline{A}_{f}\right) \sinh\left(y\Gamma t\right) - 2\Im\left(\frac{q}{p}A_{f}^{*}\overline{A}_{f}\right) \sin\left(x\Gamma t\right) \right\} \\ \left. + \operatorname{interference} \text{ of both} \right\}$$

• Sensitivity depends on resonance interference

• Jolanta@Implications2017

Dalitz(t) of $D^0 \rightarrow K_S \pi^+ \pi^-$ golden mode

- Large statistics and rich dynamics
- Significant $D^0 \rightarrow f \& D^0 \rightarrow \overline{f}$ interferences
- Most precise x so far

$$x = \left(0.56 \pm 0.19^{+0.04 +0.06}_{-0.08 -0.08}\right)\% \quad y = \left(0.30 \pm 0.15^{+0.04 +0.03}_{-0.05 -0.07}\right)\%$$

 $|q/p| = 0.90^{+0.16 +0.05 +0.06}_{-0.15 -0.04 -0.05} \phi = (-6 \pm 11 \pm 3^{+3}_{-4})^{\circ}$

- Belle: 1.2M signal events
- LHCb: 2M in Run1. Significant x with Run1+2?

A.Davis @ 6th Implications Workshop A.Schwartz @ Charm2016 Future of mixing & ICPV

- Dominated by LHCb
- Significant x with Run1+2?

	σ(x)	σ(y)	σ(q/p)	σ(φ)
	[10 ⁻³]	[10 ⁻³]	[10 -3]	[mrad]
HFAG 2016	1.4	0.7	80	173
Run-1 (2011 - 2012)	1.1	0.8	65	119
Run-2 (2015 - 2018)	0.8	0.6	47	83
Run-3 (2021 - 2023)	0.3	0.2	17	32

- LHCb: \sqrt{N} scaling of stat & syst
- Belle: includes irreducible syst
 Jolanta@Implications2017

PRL118, 051801 (2017)

$D^{(2017)}$ $\to K^{*0}\gamma, \,\varphi\gamma, \,\varrho^{0}\gamma$: BF & A_{CP}

- BF's poorly measured. No CPV analysis before
- Large CPV within SM, up to a few %
- First observation of $D^0 \rightarrow \varrho(770)\gamma$

 \bar{u} \bar{u} \bar{u} \bar{u} \bar{v} \bar{v} \bar{v} \bar{v}

Short distance contribution

Long distance via Vector Meson Dominance

$\mathcal{B}(D^0 \to \overline{K}^{*0}\gamma) = (4.66 \pm 0.21 \pm 0.18) \times 10^{-4}$
$\mathcal{B}(D^0 \to \phi \gamma) = (2.76 \pm 0.20 \pm 0.08) \times 10^{-5}$
$\mathcal{B}(D^0 \to \rho^0 \gamma) = (1.77 \pm 0.30 \pm 0.08) \times 10^{-5}$
* 0*0

$$\overset{\text{PLB 767 (2017) 177-187}}{A_{CP}} (D^0 \rightarrow K^+ K^-) \& A_{CP} (D^0 \rightarrow \pi^+ \pi^-)$$

- Individual A_{CP}(KK), pion-tagged sample $A_{CP}(K^+K^-) = (0.14 \pm 0.15 \pm 0.10)\%$
- Combine with $\Delta A_{CP} \Rightarrow$

$$A_{CP}(\pi^+\pi^-) = A_{CP}(K^+K^-) - \Delta A_{CP} = (0.24 \pm 0.15 \pm 0.11)\%$$

- Combine with results from muon-tagged sample JHEP07, 041 (2014)
 ⇒ LHCb combination
- Both A_{CP}'s consistent with zero

PLB 769 (2017) 345-356 Search for CPV in D⁰ \rightarrow 4 π with Energy Test

- Statistical comparison of two distributions
- Test statistics: based on distances of event pairs
- Compare with T distribution for no CPV case (randomize D flavour)
- 5-dim phase space: $m^2(\pi\pi)$, $m^2(\pi\pi\pi) \Rightarrow \mathbf{P}$ -even
- Use triple-product sign to access **P-odd** CPV

JHEP 04, 033 (2016)

$D^0 \rightarrow K_S \pi \pi$, t-dep. Dalitz, model independent

- $D^0 \rightarrow K_S \pi \pi$ is a golden mode for mixing
- Binned approach to Dalitz
- Strong phases & fractions from Cleo-c
- Fit t(D) with data driven acceptance

- This is with 2011 data: 180K signal K_S decayed inside vertex detector
- Ongoing for 2012 data: ~2M prompt+sec Also K_S decayed outside vertex detector
 Jolanta@Implications2017

Belle: 1.2M signal

$$x = (0.56 \pm 0.19^{+0.04}_{-0.08} \pm 0.08)\%$$

$$y = (0.30 \pm 0.15^{+0.04}_{-0.05} \pm 0.07})\%$$
PRD89 091103 (2014)

•44