Splitting Kernels with Heavy Flavour based on Ilten, Rodd, Thaler and Williams, Phys. Rev. D 96 (2017)

Philip Ilten UNIVERSITY^{OF}BIRMINGHAM November 10, 2017

LHCb Implications Workshop

The Problem with QCD

The Problem with QCD

The Problem with QCD

2 / 19

Factorising QCD

$$\mathrm{d}\sigma \approx \sigma \left(\frac{2\,\mathrm{d}\cos\theta}{\sin^2\theta}\right) \left(\frac{\alpha_s}{2\pi}\right) \left(\frac{N_c^2-1}{2N_c}\right) \left(\frac{1+(1-z)^2}{z}\right)\,\mathrm{d}z$$

• factorise into general form given any splitting kernel \mathcal{P}_i

$$\mathrm{d}\sigma \approx \sigma \sum_{i} \frac{\mathrm{d}\theta^{2}}{\theta^{2}} \mathcal{P}_{i}\left(z, \alpha_{s}\right) \,\mathrm{d}z$$

• diverges when collinear $(\theta \to 0, \pi)$ or infrared $(z \to 0)$

Sudakovs and Splitting Kernels

$$\Delta(Q_1^2, Q^2) = \exp\left[-\int_{Q^2}^{Q_1^2} \frac{1}{q^2} \int_{Q_0^2/q^2}^{1-Q_0^2/q^2} \mathcal{P}_i(z, \alpha_s) \,\mathrm{d}z \,\mathrm{d}q^2\right]$$

Reverse Engineering with Jets

- try to unfold initial hard partons from final state particles
 - \blacksquare collinear safe \rightarrow collinear emission changes nothing
 - **2** infrared safe \rightarrow soft emission changes nothing
 - 3 insensitive to non-perturbative effects
 - 4 applicable to both parton and hadron level
- inclusive sequential clustering is algorithm of choice at LHC

$$d_{ij} = \min(p_{\mathrm{T}i}^{2p}, p_{\mathrm{T}j}^{2p}) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = p_{\mathrm{T}i}^{2p}$$

- 1 select minimum d
- **2** if d_{ij} , combine particle *i* and *j*
- **3** if d_{iB} , consider particle as jet and remove from clustering
- 4 terminate if no particles otherwise return to 1

 k_t

Flavours of Sequential Clustering

- Cambridge/Aachen considers only geometry
- k_t and anti- k_t also consider momentum
- anti- k_t provides circular jets in R at high- p_T

anti- k_t

SoftDrop and Jet Sub-structure

- what happens with boosted topology when $Q_{\text{hard}} \gg Q_{\text{obs}}$, e.g. $W, Z, H \rightarrow q\bar{q}$?
- anti- k_t produces a single jet \rightarrow need jet sub-structure
- use jet sub-structure technique like SoftDrop

- \bigcirc create fat anti- k_t jets
- 2 build Cambridge/Aachen tree for each fat jet
- **3** split j_0 into sub-jets j_1 and j_2
- (1) if j_1 and j_2 fulfil SoftDrop condition, terminate
- **(5)** otherwise, assign j_0 to larger $p_{\rm T}$ sub-jet and return to **(3)**

Averaged Massless Splittings

• SoftDrop provides direct access to the hardest $1 \rightarrow 2$ splitting

Enter LHCb

- can we access the individual splittings?
- tag sub-jets to determine the splitting kernel
- excellent secondary c/b tagging with LHCb provides ideal experimental probe

Jet Anatomy

- 1 find all tags in event and treat as *ghosts*
- 2 build anti- k_t jets with R = 1, including tags
- **3** apply SoftDrop with $z_{\rm cut} > 0.1$ and $\beta = 0$
- (4) consider sub-jet tagged if $p_{\rm T}^{\rm tag}/(p_{\rm T1}+p_{\rm T2}) > 0.05$

Splitting Kernels with Heavy Flavour

Some Numbers

	$\sigma(\text{Pythia}) \ [\mu \text{b}]$	$\sigma(\text{Herwig}++) \ [\mu \text{b}]$
$(0,0)_{c}$	9.96×10^2	5.28×10^2
$(0,1)_{c}$	$7.56 imes 10^1$	$2.64 imes 10^1$
$(1,1)_{c}$	$6.87 imes 10^0$	2.87×10^0
$(0,2)_{c}$	1.00×10^1	$5.64 imes 10^0$
$other_c$	8.86×10^{-1}	2.47×10^{-1}
$(0,0)_b$	1.07×10^3	5.52×10^2
$(0,1)_{b}$	$1.34 imes 10^1$	$9.58 imes 10^0$
$(1,1)_{b}$	$8.40 imes 10^{-1}$	$5.03 imes 10^{-1}$
$(0,2)_{b}$	9.50×10^{-1}	5.94×10^{-1}
$other_b$	1.13×10^{-2}	7.75×10^{-3}

- missed tags migrate category up \rightarrow minimal contamination
- efficiency of tagging well understood from data

*

Heavy Flavour Splittings

Problems with Quarkonia

- how should quarkonia be treated in the parton shower?
- Pythia only showers $J/\psi^{(8)}$ with $q \to qg$

Quarkonia Splitting

Gluon Splitting

Heavy Flavour Production

- understanding heavy flavour production critical for many signals
- two approaches typically taken
 - 1 hadron-level: good angular properties, poor energy proxy
 - 2) tagged jet-level: poor angular properties, good energy proxy

FlavorCone

- good angular properties, good energy proxy
- collinear and infrared safe by jet-axis definition

- 2 particles outside of R with an jet-axis is not clustered
- 3 remaining particles are clustered with nearest axis
- jet momenta is sum of constituents

16 / 19

Gluon Splitting

Comparison

Gluon Splitting

Variable Discrimination

18 / 19

Outlook

- SoftDrop allows access to fundemental $1 \rightarrow 2~\rm QCD$ splittings
 - could help shed further light on quarkonia
- FlavorCone provides both good angular and energy properties for studying $Q\bar{Q}$ production
- LHCb's tagging capabilities provide a unique opportunity to probe fundemental QCD

Thank you!