2HDM+a mono-h studies at ATLAS: Summary and Vacuum Stability

Lars Henkelmann, Oleg Brandt

Dark Matter Working Group Meeting, 20.06.2017

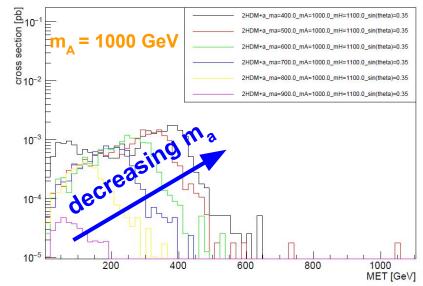
KIRCHHOFF-INSTITUT FÜR PHYSIK

Signal Kinematics: Mediator Masses

2HDM+a_ma=300.0-300.0_mA=500.0-900.0_mH=600.0-1000.0_sin(theta)=0.35-0.35

cross section [pb] 2HDM+a ma=300.0 mA=500.0 mH=600.0 sin(theta)=0.35 na=300 0 mA=700 0 mH=800 0 sin(theta)=0 3 'creas; a=300.0 mA=800.0 mH=900.0 sin(theta)=0.3 100 200 300 400 500 600 700 MET [GeV] agggg p A Ο g rooto

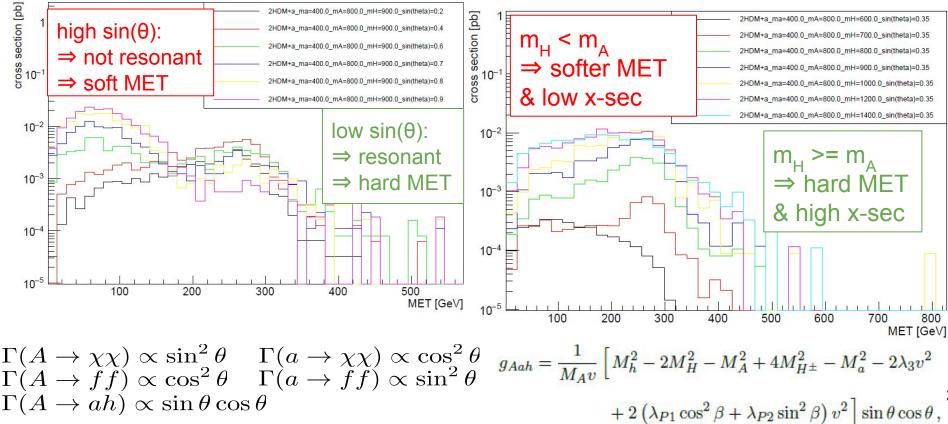
2HDM+a_ma=400.0-900.0_mA=1000.0-1000.0_mH=1100.0-1100.0_sin(theta)=0.35-0.35



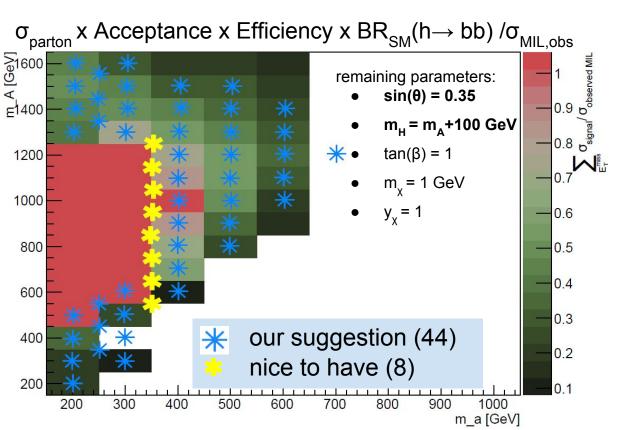
- goal: benchmark with wide variety of signatures
- m_a and m_A dominant effect on signal shape
 - o ⇒ make signal grid a mass grid

more detailed slides

$sin(\theta) = 0.35$ and $m_H - m_A = 100$ GeV \Rightarrow Jacobian Peak for hard MET



Grid proposal for generating MC



- mass grid to generate MC:
 - large variety of h+MET signal shapes
 - m_H ~ m_A ⇒ interesting for Z+MET(see Koji's Talk)
 - similar signal shape variety
 - exact value of m_H-m_A less important for Z+MET
- plot $tan(\beta)$ vs. m_a:
 - take a slice in $m_A(m_H)$
 - rescale in tan(β) (> 0.8)
 - in line with usual 2HDM limit plots

Benchmark 3, 4

 $\sin\theta = 1/\sqrt{2}, M_A = 500 \text{ GeV}$

300

mono-Z

di-top

 $t\overline{t} + E_{T, \text{miss}}$

500

5

400

Higgs invisible

mono-Higgs

flavour

10r

5

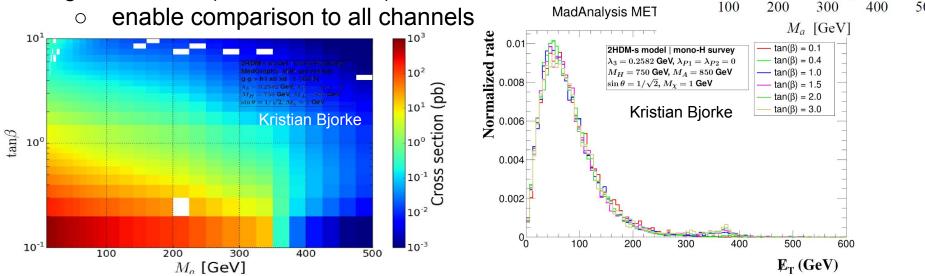
0.5

100

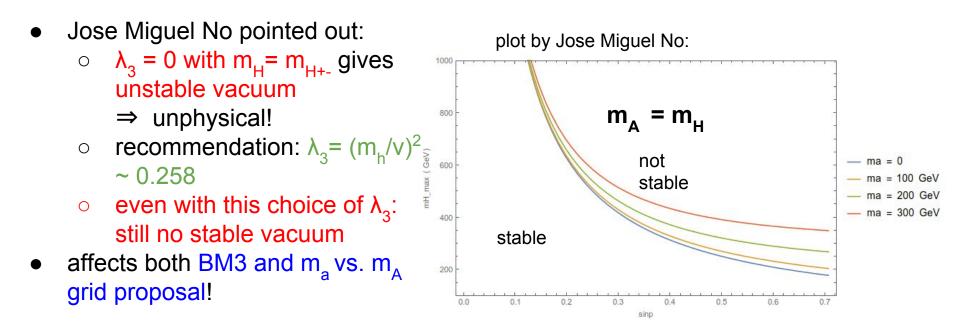
 $\tan \beta$

- nice complementarity of many search channels:
 - h+MET Ο
 - Z+MET 0
 - jet+MET Ο
 - tt+MET Ο
 - **Di-top resonance** Ο
- generate MC (also for mono-h)

enable comparison to all channels

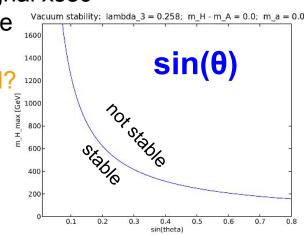


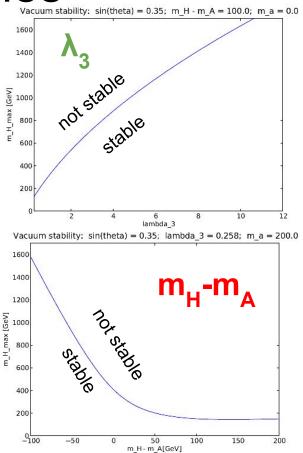
The Problem of Vacuum Stability



Different Approaches

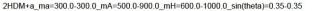
- even with $\lambda_3 = (m_h/v)^2$, we still get no stable vacuum
- ways to get stable vacuum:
 - 1. $m_{H}^{-}m_{A}^{-}$ lower \rightarrow quickly lose signal xsec \Rightarrow avoid if possible
 - 2. $sin(\theta)$ lower
 - \rightarrow quickly lose signal xsec
 - \Rightarrow avoid if possible
 - 3. λ_3 larger \rightarrow effect on signal?

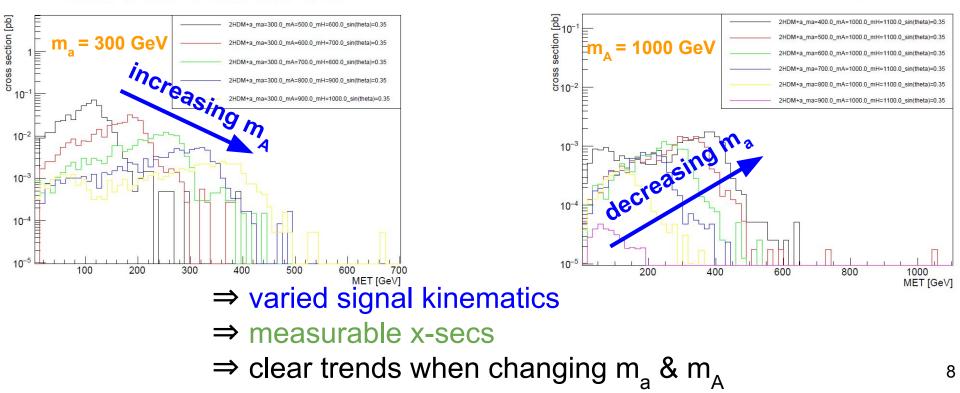




Reminder: $\lambda_3 = 0$, $m_H = m_A + 100$ GeV

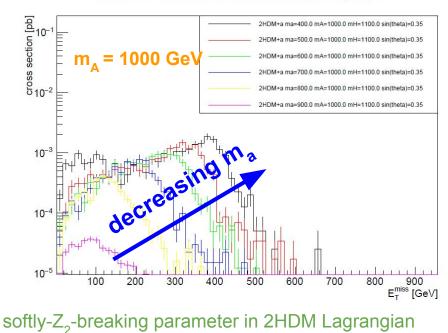
2HDM+a_ma=400.0-900.0_mA=1000.0-1000.0_mH=1100.0-1100.0_sin(theta)=0.35-0.35



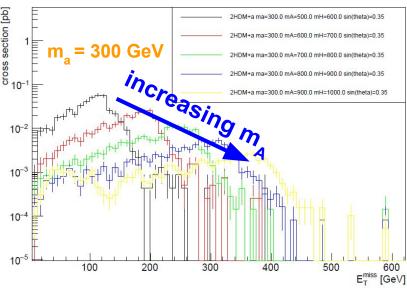


$\lambda_3 = (m_h/v)^2$, $m_H = m_A + 100 \text{ GeV}$

2HDM+a ma=400.0-900.0 mA=1000.0 mH=1100.0 sin(theta)=0.35



2HDM+a ma=300.0 mA=500.0-900.0 mH=600.0-1000.0 sin(theta)=0.35

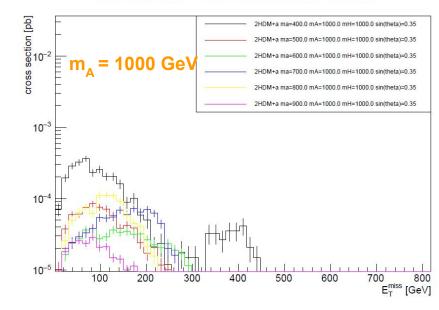


⇒ general picture unchanged
⇒ but no vacuum stability

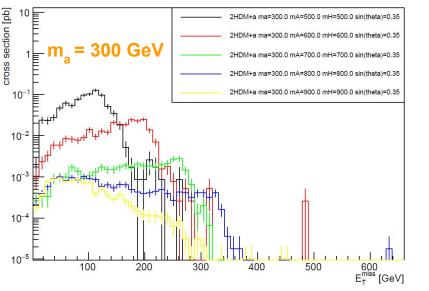
 $\Rightarrow \lambda_3 = (m_h/v)^2$ equivalent to choice of $(m_{12})^2 = m_A^2 \tan(\beta)/(1+\tan(\beta))^2$ in ATLAS 2HDM benchmark recommendations

$\lambda_{3} = 6, m_{A} = m_{H}$

2HDM+a ma=400.0-900.0 mA=1000.0 mH=1000.0 sin(theta)=0.35

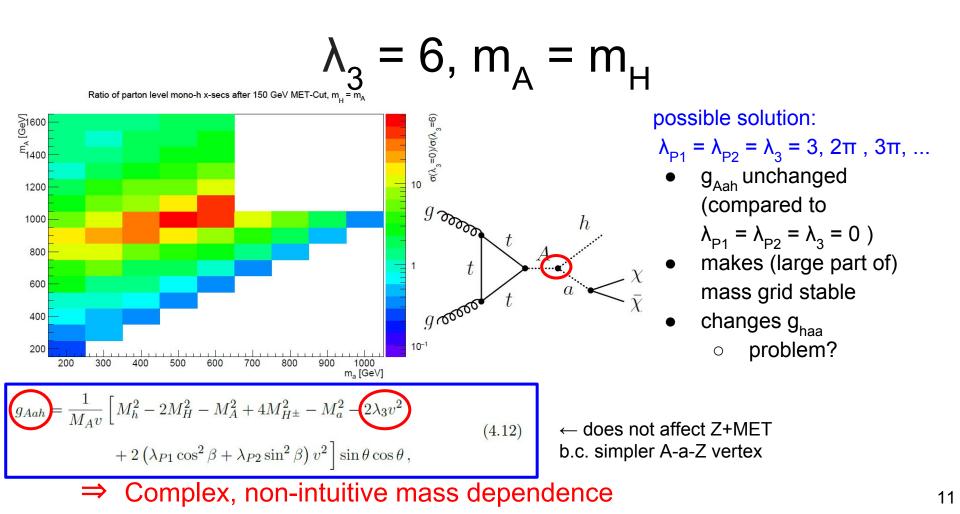


2HDM+a ma=300.0 mA=500.0-900.0 mH=500.0-900.0 sin(theta)=0.35



the vacuum is stable, but:

- ⇒ reduced variety of signatures with detectable xsecs
- ⇒ Complex, non-intuitive mass dependence

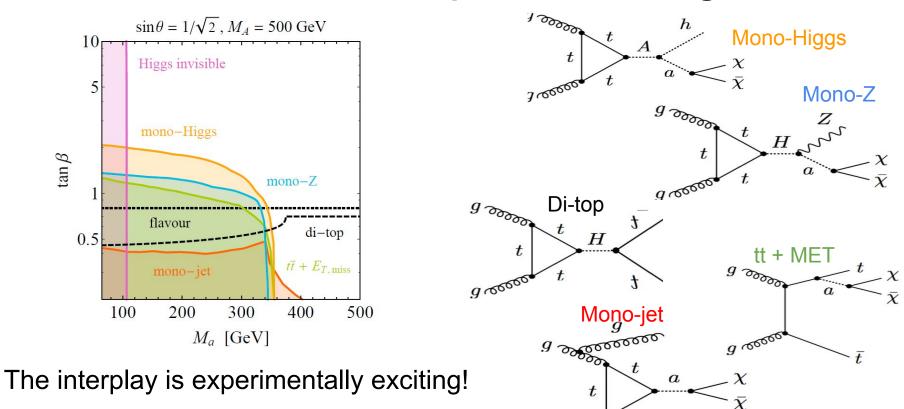


Summary

- m_a m_A grid for producing diverse signal kinematics
 - \circ high complementary with Z + MET since m_H m_A fixed
 - reweight fixed m_A slice in tan(β) for plotting m_a vs. tan(β)
- generate points in $m_a tan(\beta)$ plane of BM3
 - o for complementarity with all other search channels
 - \circ reweight for high values of tan(β)
- lack of vacuum stability:
 - less important than diversity of signatures
 - not fixed by just $\lambda_3 = 0.2582 = (m_h/v)^2$
 - this choice of λ_3 would be equivalent to the recommendation for m_{12} in existing ATLAS 2HDM benchmarks
 - h+MET signal kinematics dependence on λ_3 is complex
 - $\circ \quad \lambda_{P1}$ = λ_{P2} = λ_{3} (= 3, 2 π , 3 π , ...) as simple solution?

Backup

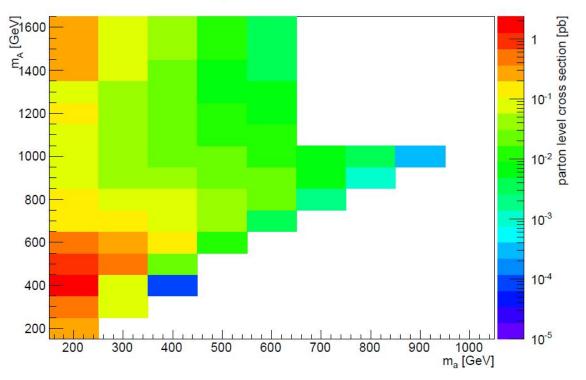
2HDM+a: Diverse palette of signatures



g .00000

Mass Grid: Parton level x-secs

2HDM+a: parton level cross section

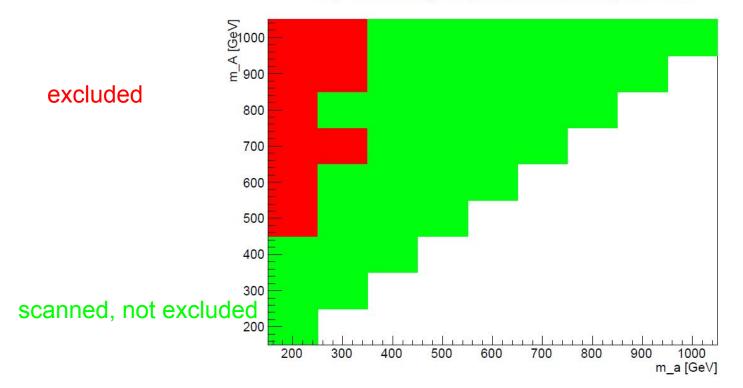


remaining parameters:

- sin(θ) = 0.35
- m_H = m_A+100 GeV = m_{H+-}
- tan(β) = 1
- m_x = 1 GeV
- y_x = 1

Backup: Exclusion Region

Region excluded by comparison with model-independent limits

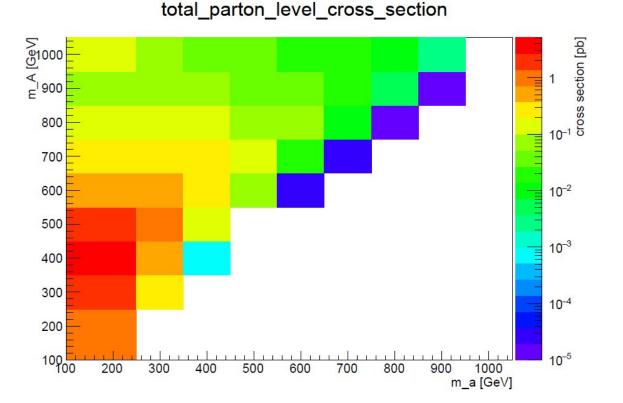


16

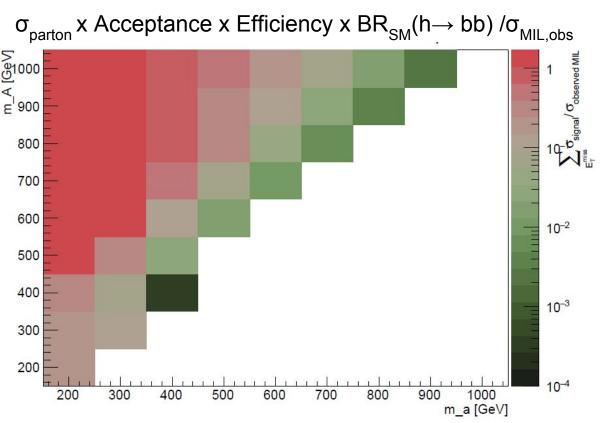
Backup: Cross-Section

Parton-level cross-section × Acceptance × Efficiency × BR(h \rightarrow b \overline{b}), summed over the four E^{miss}_T bins < c × BR(h→bū) [pb]</pre> A GeV E 900 $\sum_{\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}}\sigma_{\mathsf{part}}\times\mathsf{A}\times\mathsf{e}$ 10⁻³ 10-4 m_a [GeV]

Backup: Parton-Level Cross-Section



Estimating mono-h→ bb Sensitivity



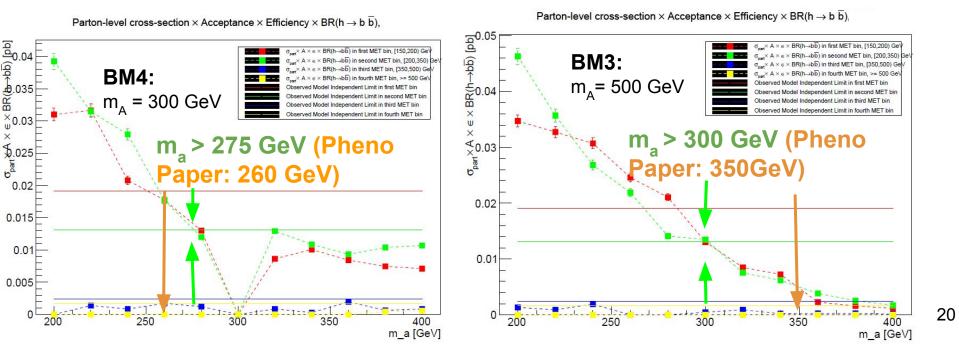
- 1. simulate parton-level x-sec
- 2. bin into 4 MET bins
- 3. fold (bin-by-bin) with Acceptance x Efficiency
- multiply with SM h→bb branching ratio
- 5. divide (bin-by-bin) by observed upper limit on $\sigma(h(\rightarrow bb) + MET)$
- 6. sum over 4 MET bins

Range in	$\sigma_{{\rm vis},h+{ m DM}}^{ m obs}$	$\sigma^{\exp}_{\mathrm{vis},h+\mathrm{DM}}$	$\mathcal{A} \times \varepsilon$
$E_{\rm T}^{\rm miss}/{\rm GeV}$	[fb]	[fb]	%
[150, 200)	19.1	$18.3^{+7.2}_{-5.1}$	15
[200, 350)	13.1	$10.5^{+4.1}_{-2.9}$	35
[350, 500)	2.4	$1.7_{-0.5}^{+0.7}$	40
[500,∞)	1.7	$1.8^{+0.7}_{-0.5}$	55

Cross-Check: Benchmarks 3 and 4

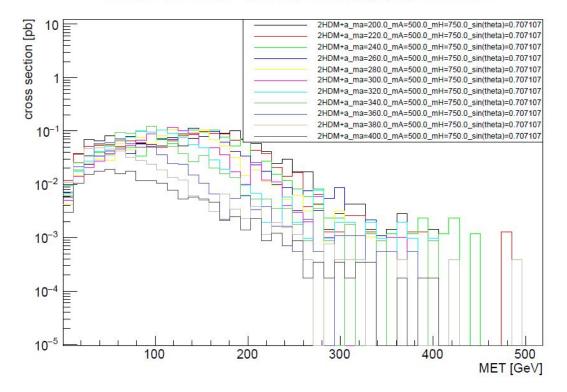
- scan m_a along tan(β) = 1 for Benchmarks 3 and 4
- compare to MILs (L = 36.5 fb⁻¹ for mono-h \rightarrow bb)

- m_H = 750 GeV
- $sin(\theta) = 1/sqrt(2)$
- \Rightarrow similar to pheno paper expectation (there: L = 40 fb⁻¹ for mono-h $\rightarrow \gamma\gamma$)



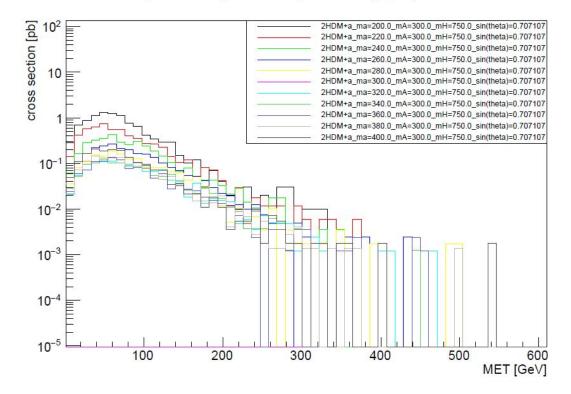
Backup: $MET(m_a)$ in BM3

2HDM+a_ma=200.0-400.0_mA=500.0-500.0_mH=750.0-750.0_sin(theta)=0.707107-0.707107



Backup: $MET(m_a)$ in BM4

2HDM+a_ma=200.0-400.0_mA=300.0-300.0_mH=750.0-750.0_sin(theta)=0.707107-0.707107



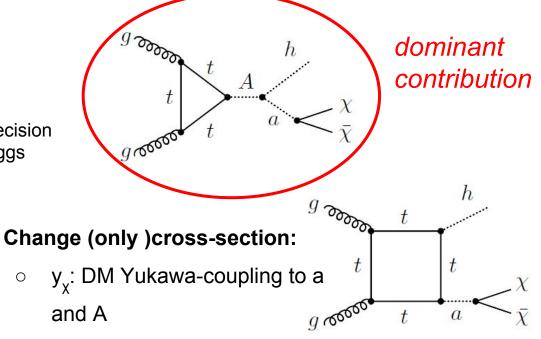
2HDM+a Parameters

Ο

- 2HDM + pseudoscalar DM-mediators a, A
- 14 parameters in total
 - 7 fixed by symmetry, EW-precision Ο measurements, observed higgs properties,...
- 7 free parameters:

Change kinematics:

- m_a, m_A : DM mediator 0 masses
- $sin(\theta)$: a-A mixing angle 0
- m_H heavy neutral scalar 0 mass



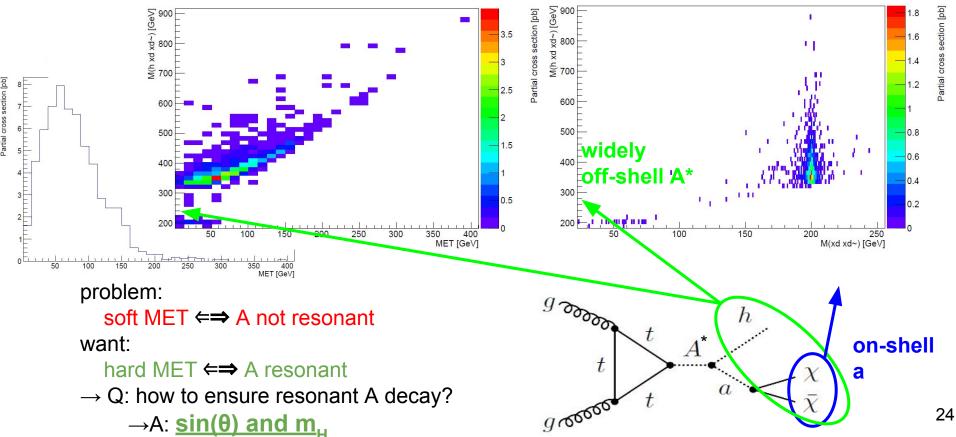
 $tan(\beta)$: ratio of vacuum Ο expectation values

$$\circ$$
 m _{χ} : DM particle mass

Why no hard MET?

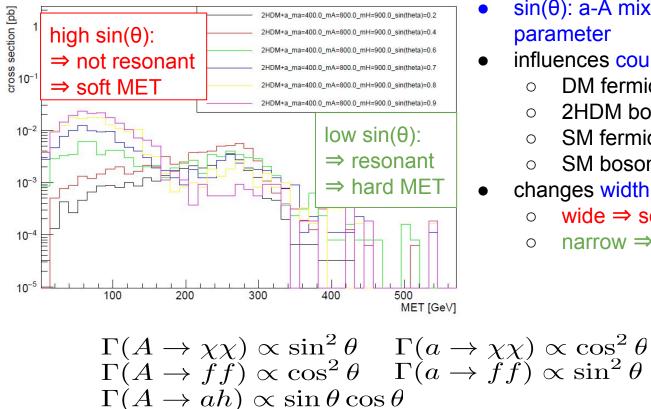
2HDM+a_ma=200.0_mA=1200.0_mH=2100.0_sin(theta)=0.707107

2HDM+a_ma=200.0_mA=1200.0_mH=2100.0_sin(theta)=0.707107

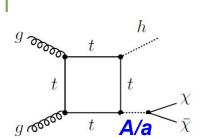


How to hard MET: $sin(\theta)$

2HDM+a ma=400.0-400.0 mA=800.0-800.0 mH=900.0-900.0 sin(theta)=0.2-0.9

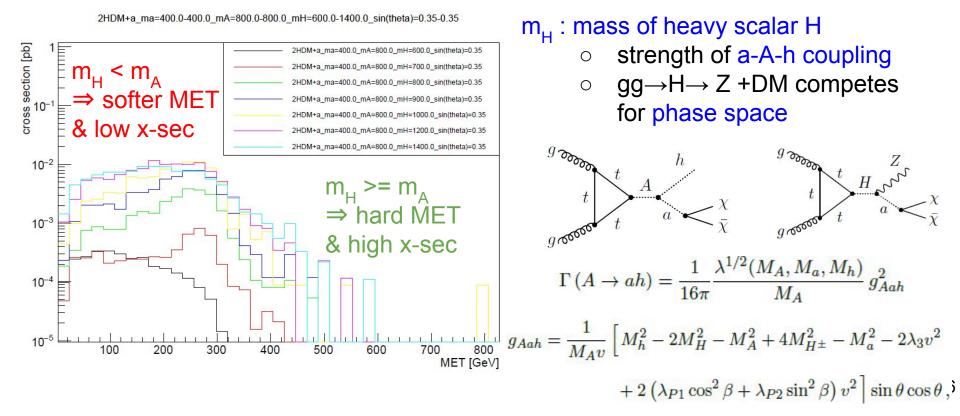


- $sin(\theta)$: a-A mixing parameter
- influences couplings to:
 - DM fermion
 - 2HDM bosons \cap
 - SM fermions Ο
 - SM bosons Ο
- changes width of A:
 - wide \Rightarrow soft MET Ο
 - 9.00000 narrow \Rightarrow hard ME Ο



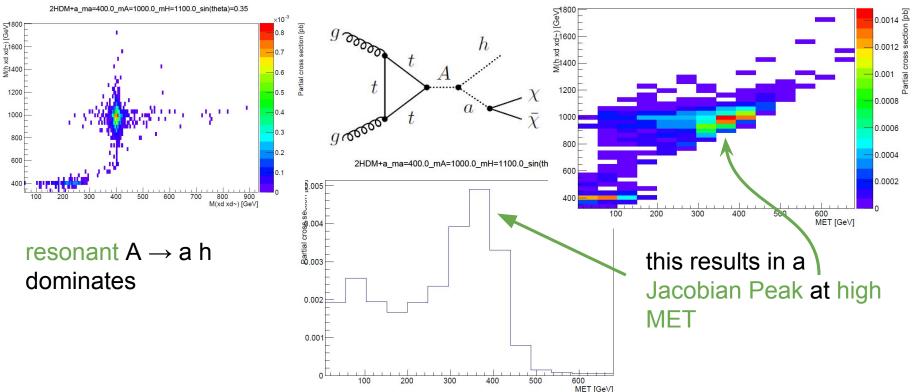
A

How to hard MET: m_H

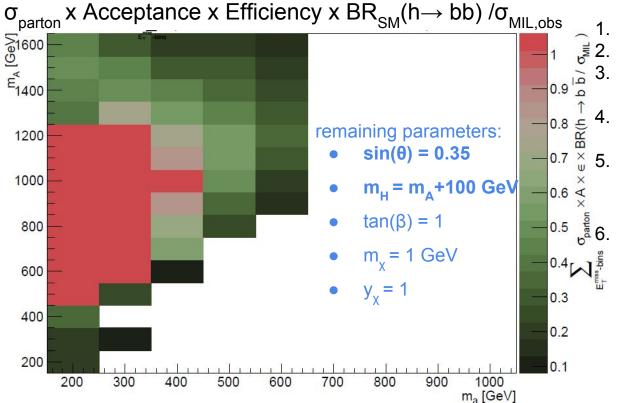


low sin(θ) & m_H ~ m_A \Rightarrow hard MET

2HDM+a ma=400.0 mA=1000.0 mH=1100.0 sin(theta)=0.35



Estimate Signal Sensitivity

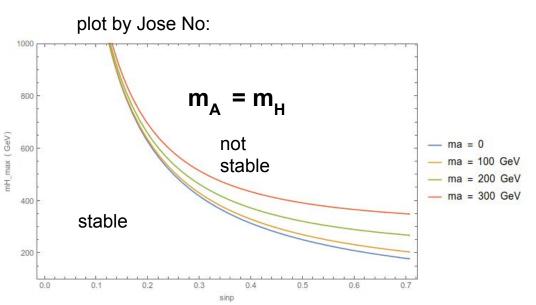


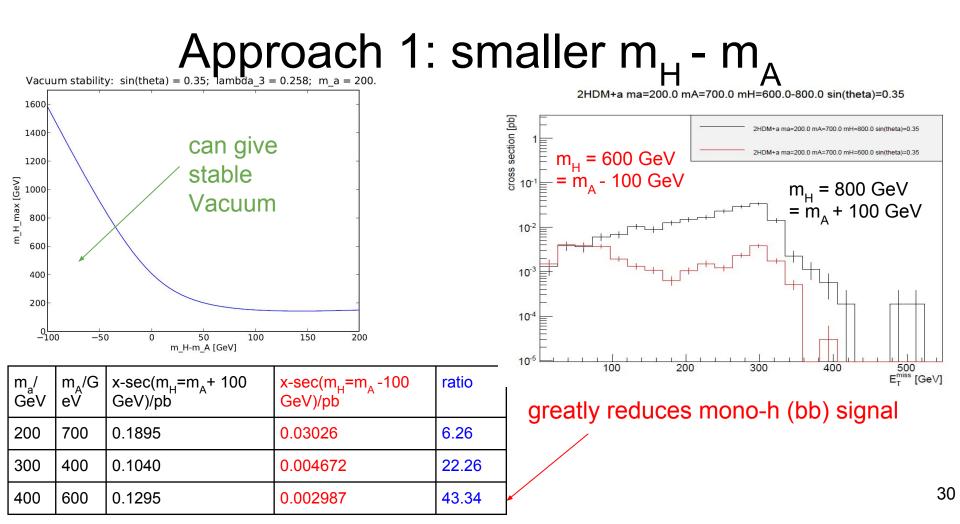
simulate parton-level x-sec bin into 4 MET bins fold (bin-by-bin) with Acceptance x Efficiency multiply with SM h \rightarrow bb branching ratio divide (bin-by-bin) by observed upper limit on $\sigma(h(\rightarrow bb) + MET)$ sum over 4 MET bins

Range in	$\sigma_{{\rm vis},h+{ m DM}}^{ m obs}$	$\sigma^{\exp}_{\mathrm{vis},h+\mathrm{DM}}$	$\mathcal{A} imes \varepsilon$
$E_{\rm T}^{\rm miss}/{\rm GeV}$	[fb]	[fb]	%
[150, 200)	19.1	$18.3^{+7.2}_{-5.1}$	15
[200, 350)	13.1	$10.5^{+4.1}_{-2.9}$	35
[350, 500)	2.4	$1.7_{-0.5}^{+0.7}$	40
[500,∞)	1.7	$1.8^{+0.7}_{-0.5}$	55

The Problem of Vacuum Stability

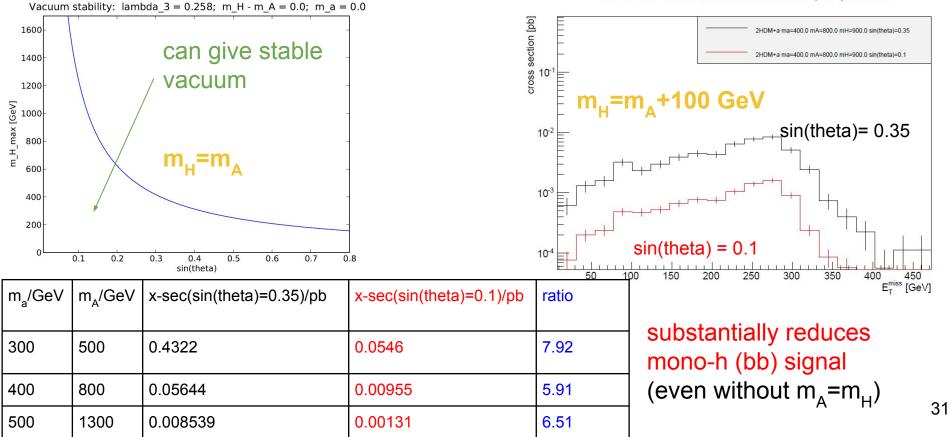
- Jose No pointed out:
 - lambda_3 = 0 with m_H = m_{H+-} gives unstable vacuum
 ⇒ unphysical!
 - recommendation: lambda_3 = $(m_h/v)^2 \sim 0.258$
 - even with this choice of lambda_3, still no stable vacuum b.c. :
 - m_H too high (esp. m_H > m_A)
 - sin(theta) too high
- affects both BM3 and mono-h(bb) proposal!





Approach 2: smaller sin(theta)

2HDM+a ma=400.0 mA=800.0 mH=900.0 sin(theta)=0.1-0.35

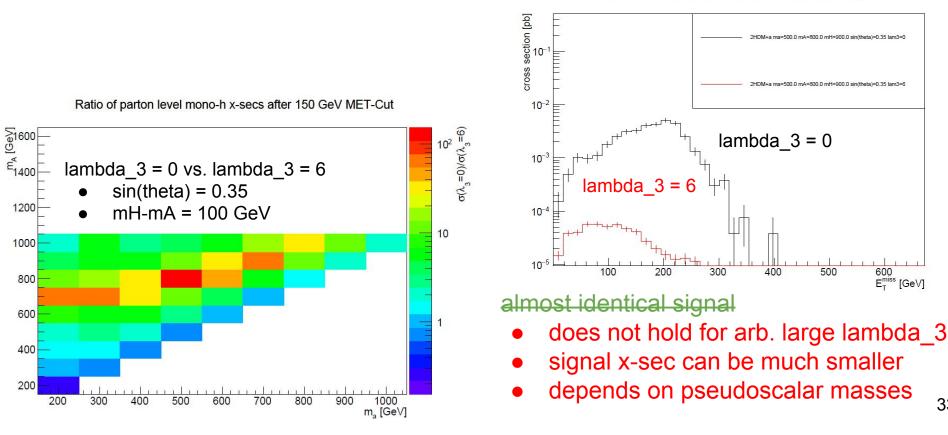


Approach 3: larger lambda_3 (I)



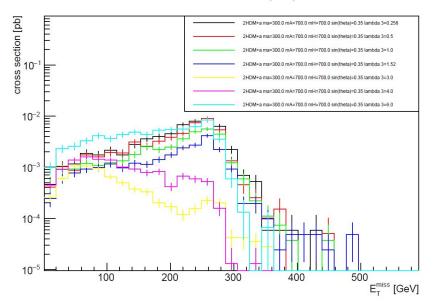
Approach 3: larger lambda 3 (II)

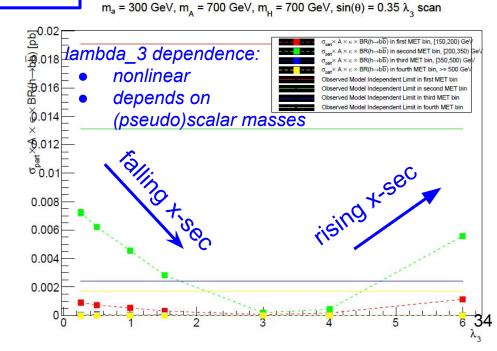
2HDM+a ma=500.0 mA=800.0 mH=900.0 sin(theta)=0.35



$\begin{array}{l} \textbf{lambda}_3 \ \textbf{dependence}_{g} \\ = \frac{1}{M_{A}v} \left[M_{h}^{2} - 2M_{H}^{2} - M_{A}^{2} + 4M_{H^{\pm}}^{2} - M_{a}^{2} - 2\lambda_{3}v^{2} \\ + 2 \left(\lambda_{P1} \cos^{2}\beta + \lambda_{P2} \sin^{2}\beta \right) v^{2} \right] \sin \theta \cos \theta, \end{array}$ (4.12)

2HDM+a ma=300.0 mA=700.0 mH=700.0 sin(theta)=0.35 lambda 3 scan





Vacuum Stability: Quartic Couplings						
(alignment limit)						
$v^2 \lambda_1 = m_h^2 - \frac{t_\beta \left(m_{12}^2 - m_H^2 s_\beta c_\beta\right)}{c_\beta^2} ,$	arXiv:1604.01406v2 [hep-ph]					
$v^2 \lambda_2 = m_h^2 - \frac{(m_{12}^2 - m_H^2 s_\beta c_\beta)}{t_\beta s_\beta^2} ,$	here A is 'our' A _o (no mixing, no DM-mediator)					
$v^2 \lambda_3 = m_h^2 + 2m_{H^{\pm}}^2 - 2m_H^2 - \frac{(m_{12}^2 - m_H^2 s_\beta c_\beta)}{s_\beta c_\beta},$						
$v^2 \lambda_4 = m_A^2 - 2m_{H^{\pm}}^2 + m_H^2 + \frac{(m_{12}^2 - m_H^2 s_\beta c_\beta)}{s_\beta c_\beta},$	⇒ replace $(m_A)^2$ with $(cos(\theta)m_A)^2 + (sin(\theta)m_a)^2$					
$v^2 \lambda_5 = m_H^2 - m_A^2 + \frac{(m_{12}^2 - m_H^2 s_\beta c_\beta)}{s_\beta c_\beta}.$ (2.10)						

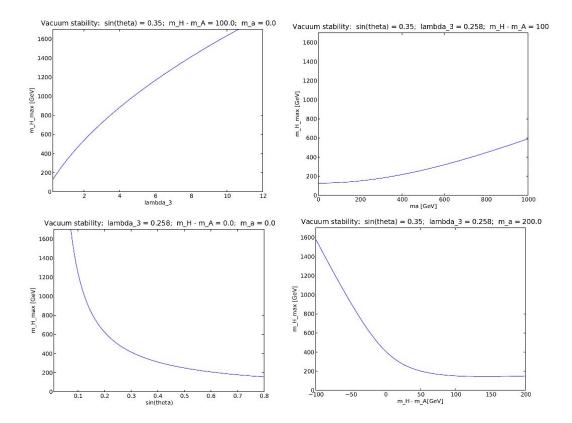
Vacuum Stability: equations

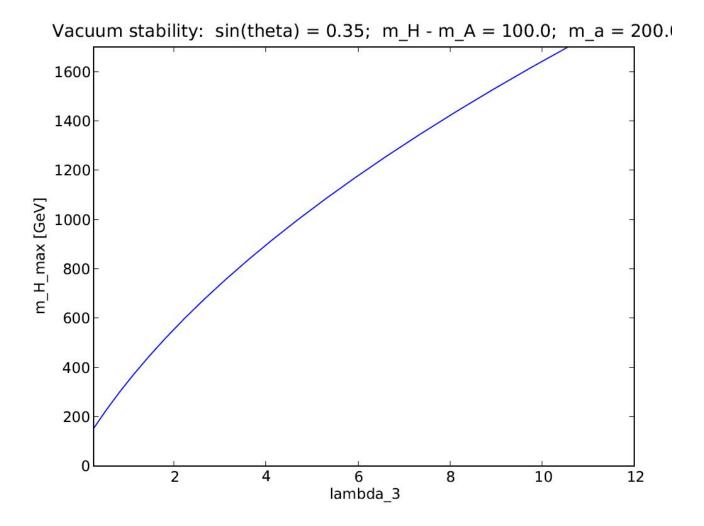
 $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_3 > -\sqrt{\lambda_1 \lambda_2}$, $\lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}$. (3.1)with $m_{H} = m_{H+}$ and in the **alignment limit**, arXiv:1604.01406v2 [hep-ph] $\lambda_3 >= (m_{\mu}/v)^2$ gives that $\lambda_{1,2} > 0$ for any tan(β), so only the last equation is relevant. It can be shown (using the relations in (2.10) in linked paper/ on slide 10) that with such a λ_3 , $sqrt(\lambda_1, \lambda_2) \ge \lambda_3$ for any $tan(\beta)$. Using this, the last ineq. in (3.1) is fulfilled in all cases where $2\lambda_3 + \lambda_4 - |\lambda_5| > 0$, which after inserting (2.10) gives

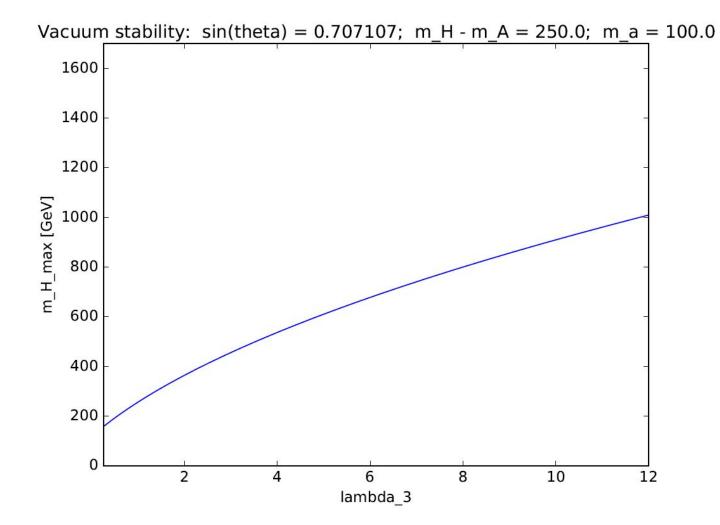
$$v^2 \lambda_3 > m^2_H - (\cos(\theta)m_A)^2 - (\sin(\theta)m_a)^2$$

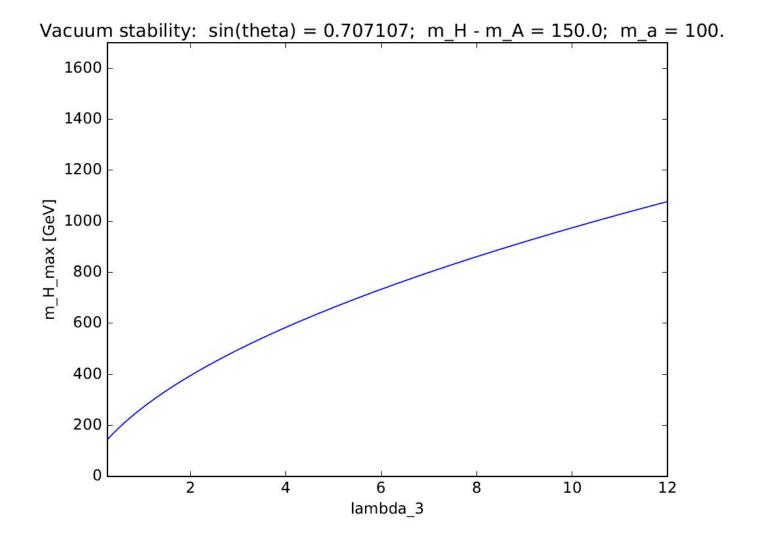
which can then be solved for $m_{H,max} (v, \lambda_3, m_a, sin(\theta), m_H - m_A)$

Vacuum Stability: dependencies

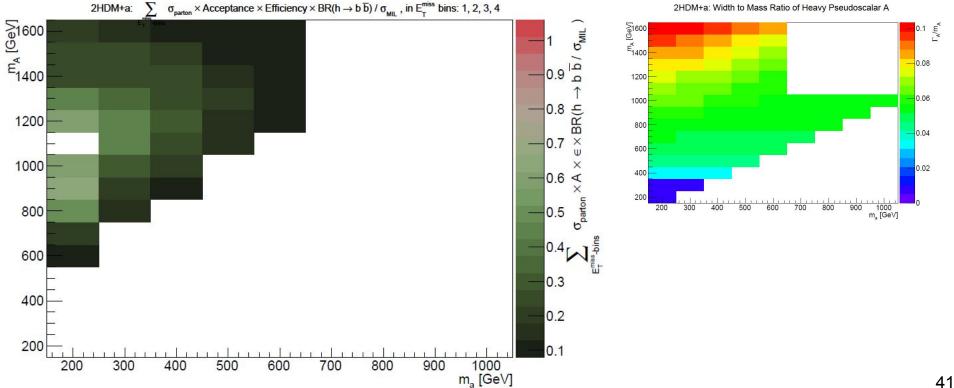




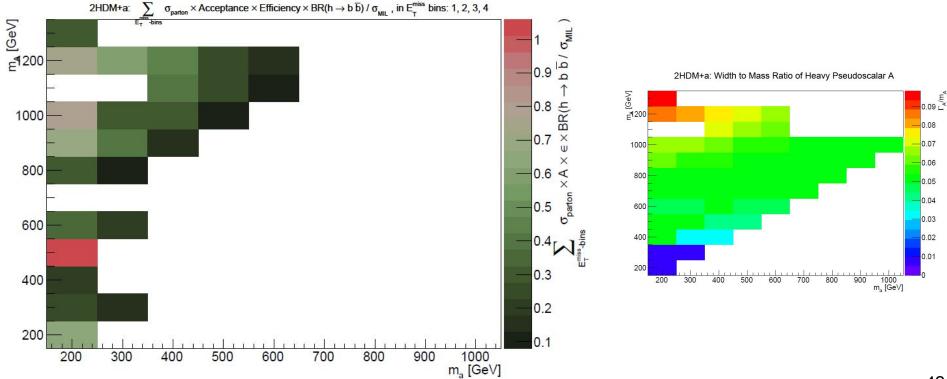




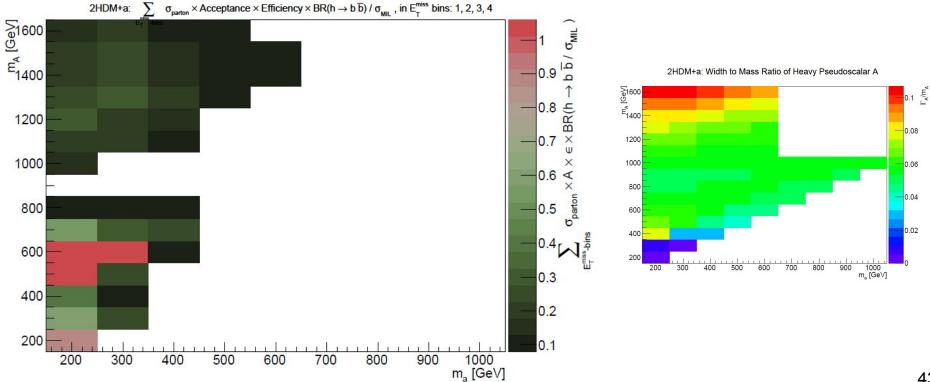
Scan with $m_{H} = m_{\Delta} - 100 \text{ GeV}$, $\lambda_{3} = 0.258$



Scan with $m_H = m_A + 100$ GeV, $\lambda_3 = 6$



Scan with $m_{H} = m_{A}$ GeV, $\lambda_{3} = 6$

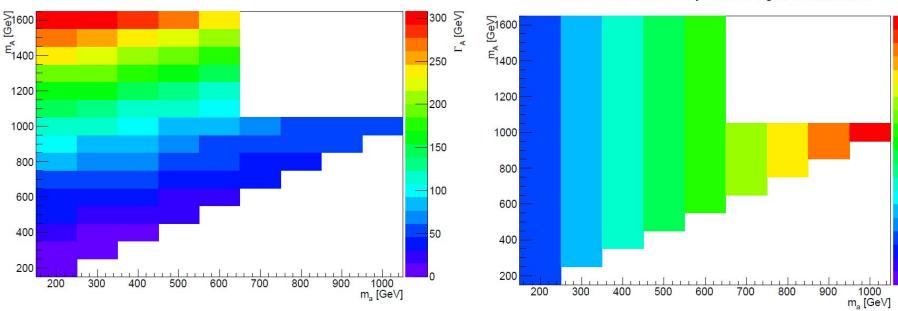


Pseudoscalar Widths

2HDM+a: Intrinsic Decay Width of Light Pseudoscalar a

mH = mA + 100 GeV

sin(theta) = 0.35



2HDM+a: Intrinsic Decay Width of Heavy Pseudoscalar A

- width of a is always small
- width of A can get large \rightarrow too large?

40

35

30

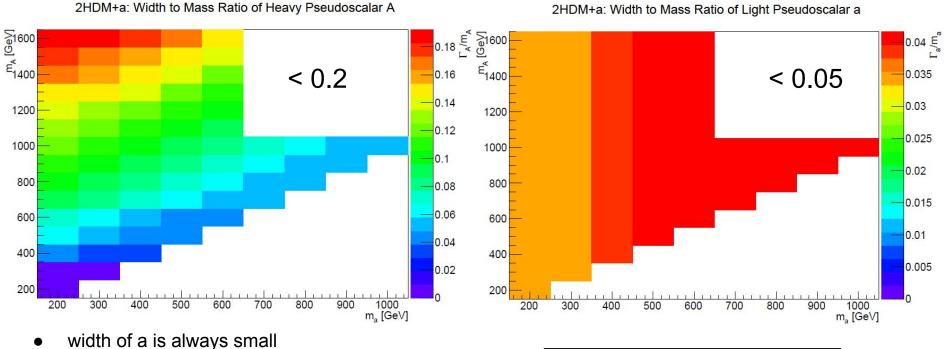
25

20

15

10

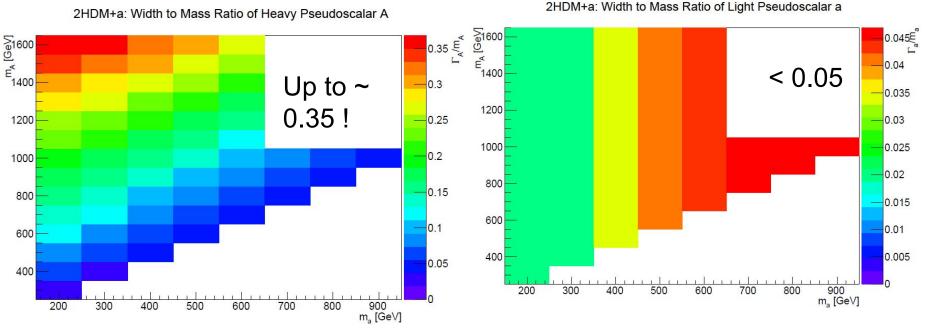
Width/Mass Ratio



- width of A can get large \rightarrow too large?
 - paper: widths <~ m/3 for Benchmarks
 - $\circ \rightarrow$ up to m/5 should be ok

mH = mA + 100 GeV
sin(theta) = 0.35

Width/Mass at sin(theta) = 1/sqrt(2)



- width of a stays small
- width of A can get large \rightarrow too large?
 - paper: widths <~ m3 for Benchmarks
 - $\circ \Rightarrow$ the very top left is a bit of a problem

- mH = mA + 100 GeV
- *sin(theta)* = 1/sqrt(2)

"/z" vs no "/z": Cross-check

2HDM+a ma=600.0 mA=1000.0 mH=1100.0 sin(theta)=0.35

cross section [pb] 10⁻² 10 2HDM+a ma=200.0 mA=700.0 mH=800.0 sin(theta): a=600.0 mΔ=1000.0 mH=1100.0 sin(theta)=0.35 wit 2HDM+a ma=600.0 mA=1000.0 mH=1100.0 sin(theta)=0.35 without : Black: allowing internal Z Red: without internal Z 10-10 $P_{chi2} = 0.131265$ 0.172859 10 chi2/NDF = 1.35chi2/NDF = 1.2710 200 100 300 400 500 100 200 300 400 500 E^{miss} [GeV] E^{miss} [GeV]

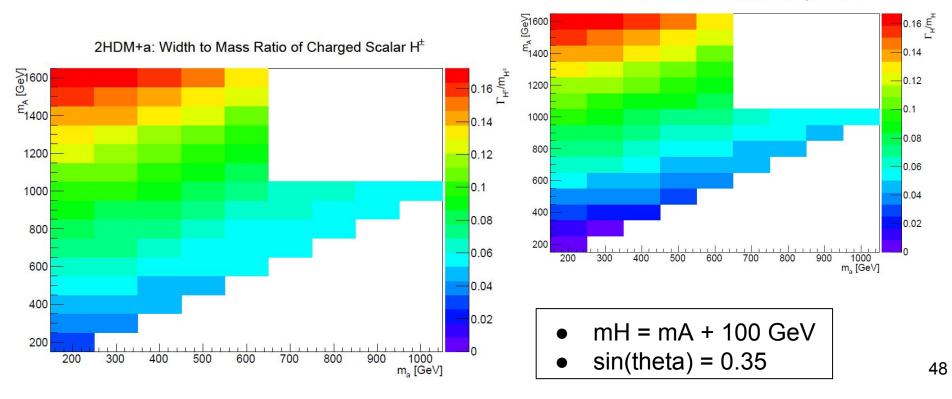
- Event generation in mono-h excluding internal z lines (generate g g > h1 xd xd~ \z [QCD]) is a lot faster
- Can break gauge invariance ⇒ cross-check needed
- Checked standalone with 1000 events each
- ⇒ no striking difference, will verify with larger sample

2HDM+a ma=200.0 mA=700.0 mH=800.0 sin(theta)=0.35

width/mass of H and H⁺⁻

 \Rightarrow very similar to A

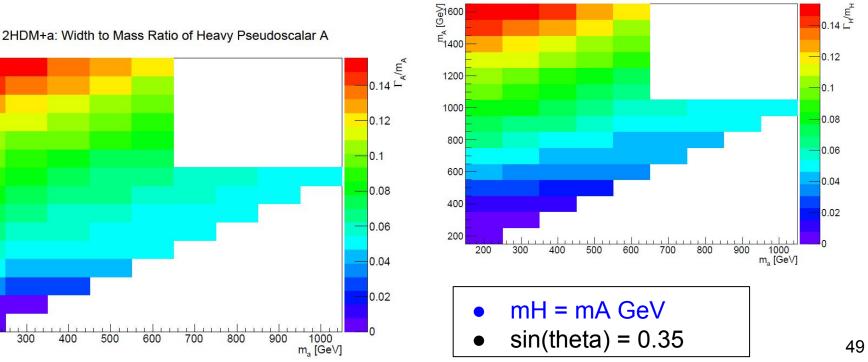
2HDM+a: Width to Mass Ratio of Heavy Scalar H

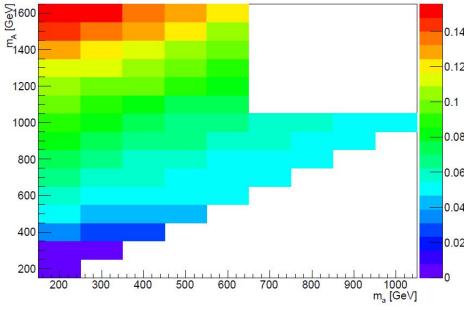


For smaller m_H

 \Rightarrow no big changes compared to $m_{\Delta} = m_{H} + 100 \text{ GeV}$

49

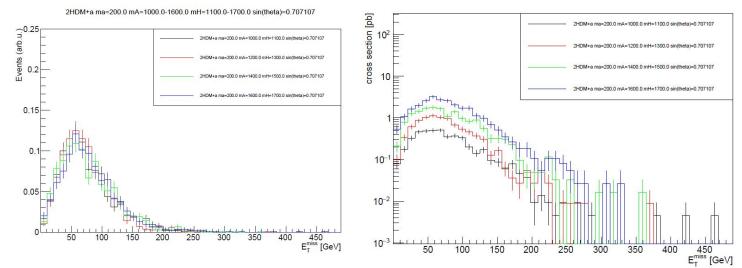




Backup:

m_A signal degeneracy for sin(theta) = 1/sqrt(2)

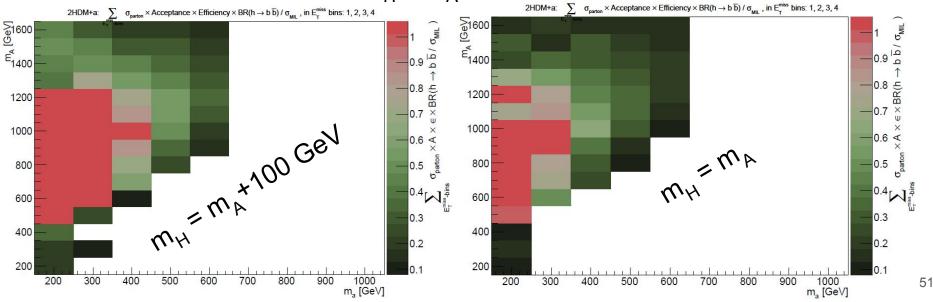
- only minor signal shape changes from changing m_A (>> m_a) for sin(theta) = 1/sqrt(2)
- dominant effect is cross-section increase
- \rightarrow exclusion largely independent of m_A in this region



2HDM+a ma=200.0 mA=1000.0-1600.0 mH=1100.0-1700.0 sin(theta)=0.707107

$m_H = m_A + 100 \text{ GeV vs.} m_H = m_A$

- less sensitive to $m_{H} = m_{A}$ scenario (reduced cross-section)
- would mono-Z benefit much from $m_{H} = m_{A}^{2}$?
 - ⇒ if not, stick to $m_{H} = m_{A} + 100 \text{ GeV}$



sin(theta) = 0.35 vs sin(theta) = 1/sqrt(2)

1.5 TeV

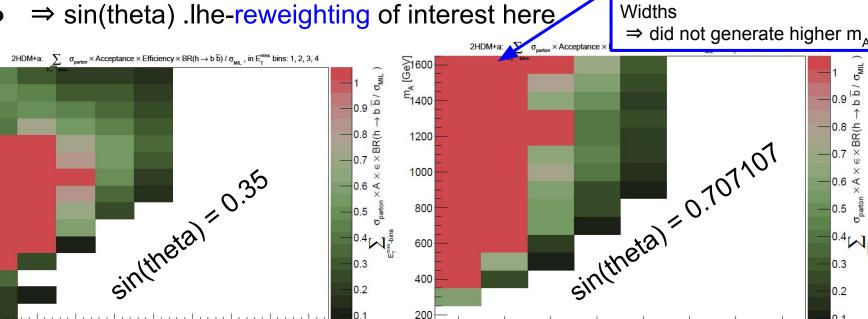
 \Rightarrow cannot rely on Auto-Calc.

m_a[GeV]

- large significance gain for high-m_A, low-m_a region Width of A ~ $m_{a}/3$. for $m_{a} >=$ low-MET, but high x-sec signal
 - ⇒ sin(theta) .lhe-reweighting of interest here

m, [GeV]

[√1600 9] [₩]1400

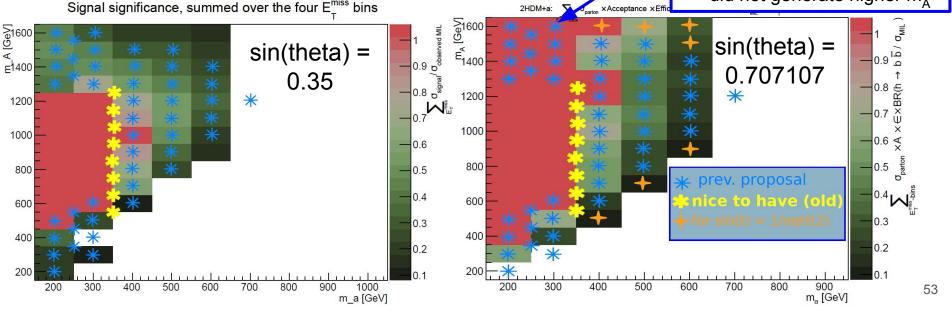


sin(theta) = 0.35 vs sin(theta)=1/sqrt(2)

- large significance gain for high-m_A, low-m_a region
 low-MET, but high x-sec signal
 - → sin(theta) .lhe-reweighting of interest here

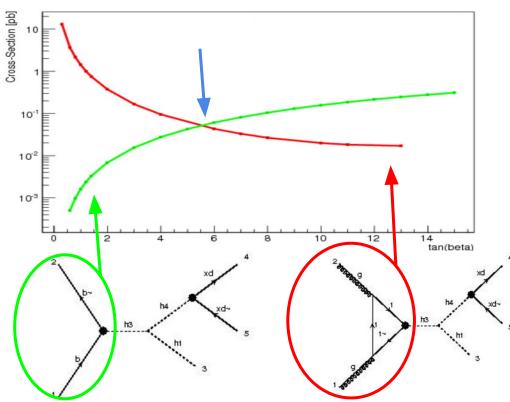
Width of A ~ $m_A/3$. for $m_A \ge 1.5 \text{ TeV}$

⇒ cannot rely on Auto-Calc. Widths



High tan(beta): production via bb?

tan(beta) scan for Benchmark 3, bb vs. gg (m_a = 200 GeV)



- Comparing production channels: 'b b > ...' and 'g g > ...'
 - type II Yukawa-sector
 - gluon fusion dominant
 up to tan(beta) ~ 5