2HDM Pseudoscalar + DM Benchmarks
 (intended summary of DM WG 2HDM Discussions over last ~ 2 Weeks)

Jose Miguel No
King's College London

LHC DM WG MEETING 20/06/17
$2 H D M+P$ (seudoscalar)

Parameter Executive Summart

$$
\left.\begin{array}{rl}
V_{2 \mathrm{HDM}} & =\mu_{1}^{2}\left|H_{1}\right|^{2}+\mu_{2}^{2}\left|H_{2}\right|^{2}-\mu^{2}\left[H_{1}^{\dagger} H_{2}+\text { h.c. }\right] \\
& +\frac{\lambda_{1}}{2}\left|H_{1}\right|^{4}+\frac{\lambda_{2}}{2}\left|H_{2}\right|^{4}+\lambda_{3}\left|H_{1}\right|^{2}\left|H_{2}\right|^{2} \quad V_{P}=\frac{1}{2} m_{P}^{2} P^{2}+\kappa\left(i P H_{1}^{\dagger} H_{2}+\text { h.c. }\right) \\
& +\lambda_{4}\left|H_{1}^{\dagger} H_{2}\right|^{2}+\frac{\lambda_{5}}{2}\left[\left(H_{1}^{\dagger} H_{2}\right)^{2}+\text { h.c. }\right] \quad
\end{array} \quad+\lambda_{P 1} P^{2}\left|H_{1}\right|^{2}+\lambda_{P 2} P^{2}\left|H_{2}\right|^{2}\right)
$$

- 12 Parameters $+m_{x}+y_{x}$
- 2 fixed by EWSB + 1 "fixed" by Higgs properties + 1 "fixed" by EWPO

$2 H D M+P_{\text {(seudoscolar) }}$

(Further) "Relevant" Constraints

- Boundedness from Below of Scalar Potential
(+ Absolute Stability of EW Vacuum)

I will discuss
these in detail

- Unitarity of $2 \rightarrow 2$ scattering processes
- Flavour (e.g. $\bar{B} \rightarrow X_{s} \gamma, \quad B_{s} \rightarrow \mu^{+} \mu^{-}$)

Boundedness from Below (BFB)

If $B \neq B$ in $V(\phi)$, field(s) run away to $\mp \infty$ (with $V \rightarrow-\infty$)

$$
\begin{aligned}
V_{2 \mathrm{HDM}} & =\mu_{1}^{2}\left|H_{1}\right|^{2}+\mu_{2}^{2}\left|H_{2}\right|^{2}-\mu^{2}\left[H_{1}^{\dagger} H_{2}+\text { h.c. }\right] \\
& +\frac{\lambda_{1}}{2}\left|H_{1}\right|^{4}+\frac{\lambda_{2}}{2}\left|H_{2}\right|^{4}+\lambda_{3}\left|H_{1}\right|^{2}\left|H_{2}\right|^{2} \\
& +\lambda_{4}\left|H_{1}^{\dagger} H_{2}\right|^{2}+\frac{\lambda_{5}}{2}\left[\left(H_{1}^{\dagger} H_{2}\right)^{2}+\text { h.c. }\right]
\end{aligned}
$$

$$
\begin{aligned}
V_{\mathrm{P}}= & \frac{1}{2} m_{P}^{2} P^{2}+\kappa\left(i P H_{1}^{\dagger} H_{2}+\text { h.c. }\right) \\
& +\lambda_{P 1} P^{2}\left|H_{1}\right|^{2}+\lambda_{P 2} P^{2}\left|H_{2}\right|^{2}+\lambda \mathrm{P}^{4}
\end{aligned}
$$

Boundedness from Below (BFB)

If $B \bar{B}$ in $V(\phi)$, field(s) run away to $\mp \infty \quad$ (with $\vee \rightarrow-\infty$)

$$
\begin{aligned}
& V_{2 \mathrm{HDM}}=\mu_{1}^{2}\left|H_{1}\right|^{2}+\mu_{2}^{2}\left|H_{2}\right|^{2}-\mu^{2}\left[H_{1}^{\dagger} H_{2}+\text { h.c. }\right] \\
& +\frac{\lambda_{1}}{2}\left|H_{1}\right|^{4}+\frac{\lambda_{2}}{2}\left|H_{2}\right|^{4}+\lambda_{3}\left|H_{1}\right|^{2}\left|H_{2}\right|^{2} \\
& +\lambda_{4}\left|H_{1}^{\dagger} H_{2}\right|^{2}+\frac{\lambda_{5}}{2}\left[\left(H_{1}^{\dagger} H_{2}\right)^{2}+\text { h.c. }\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { thes }
\end{aligned}
$$

How to Check?
Look at $V(\phi)$ at large field values $\phi \gg v$
hep-ph/0207010
BFB: $\lambda_{1}>0, \quad \lambda_{2}>0, \quad \lambda_{3}>-\sqrt{\lambda_{1} \lambda_{2}}, \quad \lambda_{3}+\lambda_{4}-\left|\lambda_{5}\right|>-\sqrt{\lambda_{1} \lambda_{2}}$

Boundedness from Below (BFB)

BFB: $\lambda_{1}>0, \quad \lambda_{2}>0, \quad \lambda_{3}>-\sqrt{\lambda_{1} \lambda_{2}}, \quad \lambda_{3}+\lambda_{4}-\left|\lambda_{5}\right|>-\sqrt{\lambda_{1} \lambda_{2}}$
$m_{H^{ \pm}}=m_{H}$

$$
\Rightarrow \quad \lambda_{3} \geq \frac{m_{h}^{2}}{v^{2}}
$$

Boundedness from Below (BFB)

$$
\text { BFB: } \quad \lambda_{1}>0, \quad \lambda_{2}>0, \quad \lambda_{3}>-\sqrt{\lambda_{1} \lambda_{2}}, \quad \lambda_{3}+\lambda_{4}-\left|\lambda_{5}\right|>-\sqrt{\lambda_{1} \lambda_{2}}
$$

$$
m_{H^{ \pm}}=m_{H} \quad \lambda_{3} \geq \frac{m_{h}^{2}}{v^{2}}=0.258
$$

$m_{A}=m_{H} \quad$ (Better for $m_{A}>m_{H}$, worse for $m_{A}<m_{H}$)
$\sin \theta=0.35, \tan \beta=1$

$$
\mathrm{m}_{\mathrm{a}}=100 \mathrm{GeV}, \quad \tan \beta=1
$$

Boundedness from Below (BFB)

$m_{H^{ \pm}}=m_{H}$

$$
m_{A}=m_{H}
$$

$$
\left.\lambda_{3} \geq 1 \quad \text { (e.g. } \lambda_{3} \in[1,3]\right)
$$

Increasing λ_{3} may decrease $g_{a A h}$ (weakens mono-Higgs sensitivity)
$g_{a A h}=\frac{c_{\theta} s_{\theta}}{m_{H} v}\left[m_{h}^{2}+m_{H}^{2}-m_{a}^{2}-2\left(\lambda_{3}-\lambda_{P 1} c_{\beta}^{2}-\lambda_{P 2} s_{\beta}^{2}\right) v^{2}\right]$

Solution (Martin Bauer \& Oleg Brandt discussion):

$$
\lambda_{3}=\lambda_{P 1}=\lambda_{P 2}
$$

impact on $g_{\text {haa }}$ (very minor effect on $h \rightarrow \operatorname{Inv}$, given m_{a} scan)
Choice of λ_{3} impacts $g_{\text {Haa }}$ (effect on mono-Z)
$g_{\text {Haa }}=\frac{1}{m_{H} v}\left[2 t_{2 \beta}^{-1} s_{\theta}^{2}\left(m_{h}^{2}-\lambda_{3} v^{2}\right)+s_{2 \beta} c_{\theta}^{2} v^{2}\left(\lambda_{P 1}-\lambda_{P 2}\right)\right]$

- Absolute Stability of EW Vacuum (MS) 1303.5098

Even if $B F B, E W$ vacuum may not be absolute minimum

For alignment/decoupling limit, MS requires $2 m_{H^{ \pm}}^{2}-m_{H}^{2}+m_{h}^{2}>\lambda_{3} v^{2}$

$$
\begin{gathered}
\text { (for } m_{H+}=m_{H} \& \lambda_{3}=3, \\
m_{H}>400 \mathrm{GeV} \text { OK) }
\end{gathered}
$$

- Unitarity hep-ph/0508020
$2 \rightarrow 2$ scatterings

Need to respect S-Matrix unitarity

Generically less constraining than $B F B$
summary \& Remarks
"Implications from all indirect constraints - be it flavour, electroweak precision constraints or stability requirements - should be treated as preferred parameter space in a simplified model framework. It would contradict the idea of simplified models if these constraints were taken at face value."

Well - justified to relax an indirect constraint if impact of the analysis (e.g. modified kinematics) and/or new phenomenology arises.

Initial (set of) $2 H D M+P$ benchmarks

$$
m_{H^{ \pm}}=m_{A}=m_{H} \quad, \quad \lambda_{3}=\lambda_{P 1}=\lambda_{P 2} \in[1,3] ?
$$

Scalar widths beyond 30% only if $B \neq B$
Maximum value of m_{H} in scan? Minimum value of m_{a} ?

For later (to study in the meantime):
\rightarrow Impact of mass splittings among heavy states
\rightarrow Away from alignment/decoupling limit

A (tiny) bit more on $B F B$...

Possible for BFB conditions to be sensitive to UV physics

This UV sensitivity of BFB generically leads to meta-stable EW vacuum

