### **Exploring Spin Effects in Lambda B Production and Decay** $p+p \rightarrow \Lambda_{h} + X \rightarrow J/\Psi(\mu\mu) + \Lambda_{0}(\pi p)$

Jiri Stehlik SUNY Binghamton

Advisers: Prof. Neal Dan Schreirch University of Michigan



### **Polarized Surprises**

- Physicists expected spin effects to play no role at higher energy
- Big surprises came when looking
  - Proton Proton
    Scattering
  - $-\Lambda_0$  decay



# Why Study $\Lambda_{b}$ ?

- To study particle production mechanisms through spin effects
- To test model predictions of parity violation
- To test dependence of polarization on quark mass
- To look for heavy quark Compositeness







μ

μ

#### ∧ Decay Vertex

р

π

**A**<sub>b</sub> Decay Angles Convention



## **A** Decay Probability Distribution Function

| i  | $f_{1i}$                                                                                   | $f_{2i}$              | $F_i$                                                                     |
|----|--------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|
| 0  | $a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$                        | 1                     | 1                                                                         |
| 1  | $a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$                        | $P_b$                 | $\cos \theta$                                                             |
| 2  | $a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$                        | $\alpha_{\Lambda}$    | $\cos \theta_1$                                                           |
| 3  | $a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$                        | $P_b \alpha_\Lambda$  | $\cos\theta\cos\theta_1$                                                  |
| 4  | $-a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{-}^{*}$ | 1                     | $1/2 (3\cos^2 \theta_2 - 1)$                                              |
| 5  | $-a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} - \frac{1}{2}b_{-}b_{-}^{*}$ | $P_b$                 | $1/2 \left( 3\cos^2 \theta_2 - 1 \right) \ \cos \theta$                   |
| 6  | $-a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{-}^{*}$ | $\alpha_{\Lambda}$    | $1/2(3\cos^2\theta_2-1)\cos\theta_1$                                      |
| 7  | $-a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - \frac{1}{2}b_{+}b_{+}^{*} - \frac{1}{2}b_{-}b_{-}^{*}$ | $P_b \alpha_\Lambda$  | $1/2(3\cos^2\theta_2-1)\cos\theta\cos\theta_1$                            |
| 8  | $-3Re(a_{+}a_{-}^{*})$                                                                     | $P_b \alpha_\Lambda$  | $\sin\theta \sin\theta_1 \sin^2\theta_2 \cos\varphi_1$                    |
| 9  | $3Im(a_{+}a_{-}^{*})$                                                                      | $P_b \alpha_\Lambda$  | $\sin\theta\sin\theta_1\sin^2\theta_2\sin\varphi_1$                       |
| 10 | $-\frac{3}{2}Re(b_{-}b_{+}^{*})$                                                           | $P_b \alpha_\Lambda$  | $\sin\theta\sin\theta_1\sin^2\theta_2\cos(\varphi_1+2\varphi_2)$          |
| 11 | $\frac{3}{2}Im(b_{-}b_{+}^{*})$                                                            | $P_b \alpha_\Lambda$  | $\sin\theta\sin\theta_1\sin^2\theta_2\sin(\varphi_1+2\varphi_2)$          |
| 12 | $-\frac{3}{\sqrt{2}}Re(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$                                     | $P_b \alpha_\Lambda$  | $\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\cos\varphi_2$             |
| 13 | $\frac{3}{\sqrt{2}}Im(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$                                      | $P_b\alpha_\Lambda$   | $\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\sin\varphi_2$             |
| 14 | $-\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$                                     | $P_b \alpha_\Lambda$  | $\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\cos(\varphi_1+\varphi_2)$ |
| 15 | $\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$                                      | $P_b\alpha_{\Lambda}$ | $\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\sin(\varphi_1+\varphi_2)$ |
| 16 | $\frac{3}{\sqrt{2}}Re(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$                                      | $P_b$                 | $\sin\theta\sin\theta_2\cos\theta_2\cos\varphi_2$                         |
| 17 | $-\frac{3}{\sqrt{2}}Im(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$                                     | $P_b$                 | $\sin\theta\sin\theta_2\cos\theta_2\sin\varphi_2$                         |
| 18 | $\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$                                      | $\alpha_{\Lambda}$    | $\sin\theta_1\sin\theta_2\cos\theta_2\cos(\varphi_1+\varphi_2)$           |
| 19 | $-\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$                                     | $\alpha_{\Lambda}$    | $\sin\theta_1\sin\theta_2\cos\theta_2\sin(\varphi_1+\varphi_2)$           |

### Progress

- Toy Monte Carlo Event Generator was created
- An analysis program was written
  - 10'000 events were generated, and neglecting detector acceptance the analysis program was able to accurately extract polarization
  - Need to account for detector acceptance
- A plug-in for VP1 was created showing only relevant particles
  - Needs polishing and user friendliness





# With Plugin

11.2

