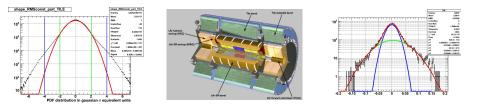
Noise Validation in ATLAS' Tile Calorimeter CERN REU, Summer 2009 - Second Presentation

Jessica Muir¹ Irene Vichou² Luca Fiorini³

¹Michigan State University

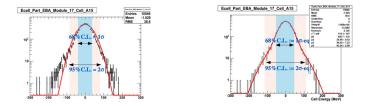
²University of Illinois at Urbana Champaign

³Institut de Física d'Altes Energies


July 23, 2009

J. Muir (MSU)

Background

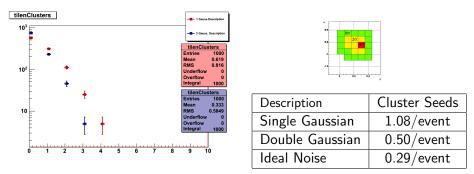

- TileCal is the Hadronic Calorimeter of the ATLAS detector. It is made of plastic scintillator tiles, which are grouped into cells.
- Studies performed in spring 2008 showed that cell noise has non-gaussian tails.
- A new noise description using a double gaussian fit was proposed in December 2008 and initially implemented by A.Artamonov in Spring 2009.

Double gaussian description

• The goal of the double gaussian description is to specify 2σ and 4σ equivalent values to match the significances of a normal distribution.

Level	Normal Distribution
Above 2σ	4.55%
Above 4σ	$6.3 imes10^{-5}$

My Project:


Verify that the double gaussian noise description does improve the identification of noise signals.

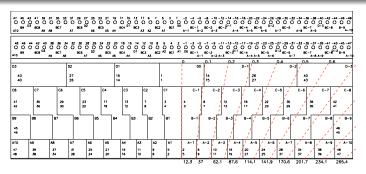
J. Muir (MSU)

TileCal Noise Validation

July 23, 2009 3 / 6

• Analyzed 1000 events from a pedastle run using the new double gaussian description and the original single gaussian description.

Results


The double gaussian description did reduce the average number of clusters formed in each event, but still resulted in a value greater than would be expected from a normal distribution 4σ limit.

J. Muir (MSU)

TileCal Noise Validation

Step 2: Take a closer look at seed cells.

- Looked at the number of times each cell acted as a $>4\sigma$ seed cell. \rightarrow For normal distribution, fraction of events would be 6.3×10^{-5}
- Of cells that were cluster seeds > 1% of the events, all but one lacked double gaussian noise constants.
- A more complete set of noise constants is being developed and should be finished within a week or so.

The next steps:

- Repeat analysis using new set of noise constants
- Rerun analysis on more events to build statistics.
- Run on data from different time periods to verify stability of description.
- Look at distribution of E/σ_{equiv}

The next steps:

- Repeat analysis using new set of noise constants
- Rerun analysis on more events to build statistics.
- Run on data from different time periods to verify stability of description.
- Look at distribution of E/σ_{equiv}

Any questions?

J. Muir (MSU)