

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin National Metrology Institute

# Potential implementation into Geant4-DNA: **nitrogen, propane** and **DNA cross sections** for electrons and light ions

### H. Nettelbeck<sup>1</sup>, C. Villagrasa<sup>2</sup>, M. Bug<sup>1</sup>, S. Meylan<sup>2</sup>

<sup>1</sup>*Physikalisch-Technische Bundesanstalt (PTB), Germany* <sup>2</sup>*Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France* 







#### **Microdosimetry:**

- Tissue-equivalent (TE) proportional counters
- Usually operated in propane-based TE gas
   N<sub>2</sub>, CO<sub>2</sub>, C<sub>3</sub>H<sub>8</sub>

### Nanodosimetry:

- Nanodosimeters operate with N<sub>2</sub> or C<sub>3</sub>H<sub>8</sub>
- Ionisation cluster size (measurable) → related to DNA damage
- *PTra* code (PTB) capable of track structure simulations in  $N_2$  or  $C_3H_8$





Rossi TE Proportional Counter

### **Motivation**



Advantages of Geant4-DNA over PTra:

- More sophisticated geometry models
- Simulate chemistry processes (radical production and tracking)



Geant4-DNA 10.3 physics models only for liquid water

Cross sections of DNA constituents (i.e. bases) for e-s and ions

- $\rightarrow$  Recently implemented in Geant4-DNA 10.4beta
- $\rightarrow$  Collaboration between IRSN and PTB

Further development: Include CS of *propane* and *nitrogen* for electrons and ions (micro- and nanodosimetry)

## **Nanodosimetry**



Assumes initial DNA damage due to number of ionisations

- $\rightarrow$  Directly within short segments of DNA or its vicinity
- → Ionisation Cluster Size (ICS)



# **Measuring Ionisation Cluster Size (ICS)**



- $\rightarrow$  Charged particles traverse sensitive volume
- $\rightarrow$  nitrogen or propane operating gas (low pressure)
- $\rightarrow$  lonised gas molecules are extracted, then detected in ion counter

### Ion-counting nanodosimeter









### **DNA cross sections in Geant4-DNA**



Cross sections models of DNA constituents in Geant4-DNA 10.4beta: → THF (deoxyribose), TMP (phosphates), PY (thymine, cytosine) and PU (adenine, guanine)



## **DNA cross sections in Geant4-DNA**

- Structure of new material management system:
- → G4VDNAModel class
  - Parent class of new material models

### → G4DNAModelInterface class

- G4VEmModel similar to that for liquid water
- Register G4VDNAModel classes & combine with existing water models

### → G4VDNADummyModel class

- Transform existing water material G4VEmModel into a G4DNAModel
- In order to build mixed materials (water + DNA components)





### **DNA cross sections in Geant4-DNA**



Example with new material management system and DNA cross sections in Geant4 10.4-beta:

### /examples/extended/medical/dna/icsd

- ICS distribution of 500 eV electrons
- Traversing a cylinder filled with THF surrounded by liquid water



# Geant4-DNA vs PTra simulations: electrons





Same approach as that for implementing DNA cross sections:

- 1) Write new model classes to include cross sections of *nitrogen* and *propane* gas  $\rightarrow$  G4VDNAModel
- 2) Initially for electrons, then for ions (H and He)
- Benchmark implemented cross sections:
   → Compare *new version* Geant4-DNA with PTra simulation results



|      |                                                         | Nitrogen <sup>§</sup>                                                               | <b>Propane</b> <sup>\$</sup> |
|------|---------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------|
|      | $\sigma_{ m el}$                                        | Integrated experimental data or screened Rutherford                                 |                              |
| e⁻   | d $\sigma_{ m el}/{ m d}\Omega$                         | Fitted experimental data or screened Rutherford                                     |                              |
|      | $\sigma_{ion}$                                          | BEB model*                                                                          | Chouki model*                |
|      | ${ m d}\sigma_{ m ion}/{ m d}E$                         | Based on Breit-Wigner distribution (Green and Sawada, 1976)                         |                              |
|      | d² $\sigma_{ m ion}$ /d $E$ d $\Omega$                  | Kinematic model (Berger)                                                            |                              |
|      | $\sigma_{\mathrm{exc},j}$                               | Porter, 1966<br>adapted to obtain measured TCS                                      | Adapted Chouki model         |
| lons | $\sigma_{ m ion}$                                       | Rudd model*+                                                                        |                              |
|      | $d\sigma_{ion}/dE$                                      | Rudd or HKS model <sup>+</sup>                                                      |                              |
|      | d <sup>2</sup> $\sigma_{ m ion}$ /d <i>E</i> d $\Omega$ | HKS model                                                                           |                              |
|      | $\sigma_{{ m exc},j}$                                   | Same as for electrons <sup>#</sup>                                                  |                              |
|      | Charge transfer                                         | He projectiles: Models for $\sigma_{ion}$ , charge-transfer, equilibrium fractions* |                              |

- <sup>§</sup> Grosswendt and Pszona, Rad. Env. Biophys. 41:91 (2002)
- <sup>\$</sup> Grosswendt, Rad. Env. Biophys. 41:103 (2002)
- \* Bug et al., PRE 88:043308 (2013)
- + Comparison Rudd and HKS models in Gargioni and Grosswendt, NIMA 580:81 (2007)
- # Unpublished to date

### **Electron-impact ionisation CS:** propane







|      |                                                | Nitrogen <sup>§</sup>                                                               | <b>Propane<sup>\$</sup></b> |
|------|------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|
|      | $\sigma_{ m el}$                               | Integrated experimental data or screened Rutherford                                 |                             |
| e    | d $\sigma_{ m el}/{ m d}\Omega$                | Fitted experimental data or screened Rutherford                                     |                             |
|      | $\sigma_{ion}$                                 | BEB model*                                                                          | Chouki model*               |
|      | d $\sigma_{ m ion}/{ m d}E$                    | Based on Breit-Wigner distribution (Green and Sawada, 1976)                         |                             |
|      | d² $\sigma_{ m ion}$ /d $E$ d $\Omega$         | Kinematic model (Berger)                                                            |                             |
|      | $\sigma_{	ext{exc},j}$                         | Porter, 1966<br>adapted to obtain measured TCS                                      | Adapted Chouki model        |
| lons | $\sigma_{ m ion}$                              | Rudd model*+                                                                        |                             |
|      | $\mathrm{d}\sigma_{\mathrm{ion}}/\mathrm{d}E$  | Rudd or HKS model+                                                                  |                             |
|      | d <sup>2</sup> $\sigma_{ m ion}$ /dEd $\Omega$ | HKS model                                                                           |                             |
|      | $\sigma_{{ m exc},j}$                          | Same as for electrons#                                                              |                             |
|      | Charge transfer                                | He projectiles: Models for $\sigma_{ion}$ , charge-transfer, equilibrium fractions* |                             |

- <sup>§</sup> Grosswendt and Pszona, Rad. Env. Biophys. 41:91 (2002)
- <sup>\$</sup> Grosswendt, Rad. Env. Biophys. 41:103 (2002)
- \* Bug et al., PRE 88:043308 (2013)
- + Comparison Rudd and HKS models in Gargioni and Grosswendt, NIMA 580:81 (2007)
- # Unpublished to date

### Verification of CS: e- transport in nitrogen



Grosswendt and Pszona, Rad. Env. Biophys. 41:91 (2002)



|      |                                             | Nitrogen <sup>§</sup>                                                               | <b>Propane</b> <sup>\$</sup> |
|------|---------------------------------------------|-------------------------------------------------------------------------------------|------------------------------|
|      | $\sigma_{ m el}$                            | Integrated experimental data or screened Rutherford                                 |                              |
| e-   | d $\sigma_{ m el}/{ m d}\Omega$             | Fitted experimental data or screened Rutherford                                     |                              |
|      | $\sigma_{ion}$                              | BEB model*                                                                          | Chouki model*                |
|      | $\mathrm{d}\sigma_\mathrm{ion}/\mathrm{d}E$ | Based on Breit-Wigner distribution (Green and Sawada, 1976)                         |                              |
|      | d² $\sigma_{ m ion}$ /d $E$ d $\Omega$      | Kinematic model (Berger)                                                            |                              |
|      | $\sigma_{\mathrm{exc},j}$                   | Porter, 1966<br>adapted to obtain measured TCS                                      | Adapted Chouki model         |
|      | $\sigma_{ion}$                              | Rudd model*+                                                                        |                              |
| lons | $d\sigma_{ion}/dE$                          | Rudd or HKS model <sup>+</sup>                                                      |                              |
|      | d² $\sigma_{ m ion}$ /d $E$ d $\Omega$      | HKS model                                                                           |                              |
|      | $\sigma_{	ext{exc},j}$                      | Same as for electrons <sup>#</sup> (of identical velocity)                          |                              |
|      | Charge transfer                             | He projectiles: Models for $\sigma_{ion}$ , charge-transfer, equilibrium fractions* |                              |

- <sup>§</sup> Grosswendt and Pszona, Rad. Env. Biophys. 41:91 (2002)
- <sup>\$</sup> Grosswendt, Rad. Env. Biophys. 41:103 (2002)
- \* Bug et al., PRE 88:043308 (2013)
- + Comparison Rudd and HKS models in Gargioni and Grosswendt, NIMA 580:81 (2007)
- # Unpublished to date

# Proton-impact ionisation CS: propane & N<sub>2</sub> PIE







Fig. 3. Mean cluster size  $M_1$ , as a function of proton energy T, calculated in propane and nitrogen using Eq. (1).

Gargioni and Grosswendt, NIMA 580:81 (2007)



|      |                                             | Nitrogen <sup>§</sup>                                                               | <b>Propane</b> <sup>\$</sup> |
|------|---------------------------------------------|-------------------------------------------------------------------------------------|------------------------------|
|      | $\sigma_{ m el}$                            | Integrated experimental data or screened Rutherford                                 |                              |
| e⁻   | d $\sigma_{ m el}/{ m d}\Omega$             | Fitted experimental data or screened Rutherford                                     |                              |
|      | $\sigma_{ion}$                              | BEB model*                                                                          | Chouki model*                |
|      | $\mathrm{d}\sigma_\mathrm{ion}/\mathrm{d}E$ | Based on Breit-Wigner distribution (Green and Sawada, 1976)                         |                              |
|      | d² $\sigma_{ m ion}$ /d $E$ d $\Omega$      | Kinematic model (Berger)                                                            |                              |
|      | $\sigma_{{ m exc},j}$                       | Porter, 1966<br>adapted to obtain measured TCS                                      | Adapted Chouki model         |
| lons | $\sigma_{ion}$                              | Rudd model*+                                                                        |                              |
|      | d $\sigma_{ m ion}/{ m d}E$                 | Rudd or HKS model <sup>+</sup>                                                      |                              |
|      | d² $\sigma_{ m ion}$ /dEd $\Omega$          | HKS model                                                                           |                              |
|      | $\sigma_{{ m exc},j}$                       | Same as for electrons <sup>#</sup> (of identical velocity)                          |                              |
|      | Charge transfer                             | He projectiles: Models for $\sigma_{ion}$ , charge-transfer, equilibrium fractions* |                              |

- <sup>§</sup> Grosswendt and Pszona, Rad. Env. Biophys. 41:91 (2002)
- <sup>\$</sup> Grosswendt, Rad. Env. Biophys. 41:103 (2002)
- \* Bug et al., PRE 88:043308 (2013)
- + Comparison Rudd and HKS models in Gargioni and Grosswendt, NIMA 580:81 (2007)
- # Unpublished to date

### Helium-impact ionisation CS: nitrogen









Equilibrium condition:  $f_i \sigma_{ij} = f_j \sigma_{ji}$ 



|      |                                    | Nitrogen <sup>§</sup>                                                               | <b>Propane</b> <sup>\$</sup> |
|------|------------------------------------|-------------------------------------------------------------------------------------|------------------------------|
|      | $\sigma_{ m el}$                   | Integrated experimental data or screened Rutherford                                 |                              |
| e    | d $\sigma_{ m el}/{ m d}\Omega$    | Fitted experimental data or screened Rutherford                                     |                              |
|      | $\sigma_{ion}$                     | BEB model*                                                                          | Chouki model*                |
|      | $d\sigma_{ m ion}/dE$              | Based on Breit-Wigner distribution (Green and Sawada, 1976)                         |                              |
|      | d² $\sigma_{ m ion}$ /dEd $\Omega$ | Kinematic model (Berger)                                                            |                              |
|      | $\sigma_{\mathrm{exc},j}$          | Porter, 1966<br>adapted to obtain measured TCS                                      | Adapted Chouki model         |
| lons | $\sigma_{_{ m ion}}$               | Rudd model*+                                                                        |                              |
|      | $d\sigma_{ion}/dE$                 | Rudd or HKS model <sup>+</sup>                                                      |                              |
|      | d² $\sigma_{ m ion}$ /dEd $\Omega$ | HKS model                                                                           |                              |
|      | $\sigma_{{ m exc},j}$              | Same as for electrons <sup>#</sup> (of identical velocity)                          |                              |
|      | Charge transfer                    | He projectiles: Models for $\sigma_{ion}$ , charge-transfer, equilibrium fractions* |                              |

- <sup>§</sup> Grosswendt and Pszona, Rad. Env. Biophys. 41:91 (2002)
- <sup>\$</sup> Grosswendt, Rad. Env. Biophys. 41:103 (2002)
- \* Bug et al., PRE 88:043308 (2013)
- + Comparison Rudd and HKS models in Gargioni and Grosswendt, NIMA 580:81 (2007)
- # Unpublished to date



- Cross section models of DNA constituents for electrons and ions have been implemented into Geant4-DNA 10.4beta
- Proposed further development: implement propane and nitrogen cross sections for electrons & ions into Geant4-DNA
  - $\rightarrow$  Benchmark with the PTra code
- Extend the use of Geant4-DNA to applications and users in the micro- and nanodosimetry community