Progress and Plans in Radioactive Decay

Dennis Wright
Geant4 Collaboration Meeting
27 September 2016

Outline

- Progress since last year
 - splitting of biased/unbiased RDM, correlated gamma emission, databases, new extended example
- Projects underway
 - validation of gamma correlation, beta-delayed particle emission to continuum, consistent treatment of floating levels
- What's next
 - better atomic de-excitation model
 - matrix method for time-evolution of Bateman equations
 - example for correlated gammas

Progress Since Last Year

Improvements in Radioactive Decay

- IT no longer instantiates G4PhotonEvaporation
 - now done only once in G4RadioactiveDecay, significantly reducing memory churn
- All handling of nuclear polarization moved into G4PhotonEvaporation
 - removes need for static cache of G4NuclearPolarization
- Accommodated change in G4VDecayChannel which prohibits branching ratios greater than 1
 - G4RadioactiveDecay::LoadDecayTable() now divides by 100
- Reproducibility OK only when correlated gamma not used

Separating Biased and Unbiased Radioactive Decay

- Two new radioactive decay models
 - G4RadioactiveDecayBase (all variance reduction code stripped out)
 - G4Radioactivation (derived from G4RadioactiveDecayBase, only VR code kept)
 - Original class G4RadioactiveDecay kept
- Interface changes
 - Refactored code contains changes that would break user code
 - must wait until major release to replace G4RadioactiveDecay
 - two user commands will become obsolete
 - fBeta
 - analogueMC

Correlated Gamma Emission

- Angular distribution of emitted gamma will depend on previous emissions
 - nuclear polarization must be transferred from nuclide to its daughter
 - code committed and verified → part of 10.4 release
- Angular momentum data for each nuclide added to PhotonEvaporation database
 - also multi-polarity information for mixed transitions
- Code is part of G4PhotonEvaporation and called from G4RadioactiveDecay by G4ITDecay class
 - may turn on/off
 - uses G4PhotonEvaporation::EmitFragment() method

Databases

- Latest set
 - RadioactiveDecay5.1.1
 - PhotonEvaporation4.3.3/5.0.2
 - ENSDFSTATE2.2
- Correlated Gammas
 - multipolarity and mixing ratio columns added to DB
- Beta-delayed neutron and proton decay data also added to DB
 - for ^{16, 17} N and ¹⁷O and ¹⁶C

New Extended Example: Activation

- Developed by Michel Maire
- Surveys energy deposition and particle flux from a hadronic cascade
 - FTFP_BERT_HP hadronic physics
 - IonPhysics
 - GammaNuclear
 - basic EM physics
- plots evolution of nuclear species as a function of time
 - samples time uniformly over user-specified interval
- calculates activity
- macros for ²⁰⁹Bi and ⁶⁰Co decay
- does not use biased code

Projects Underway

Improvement and Validation of Correlated Gammas

- Reports of factor of 10 100 slow-down when used
 - Jason Detwiler to work on this
- A few benchmarks are available:
 - ⁶⁰Co, ¹³³Ba and ²⁰⁸Th are particularly good due to relative simplicity of angular distribution and existence of lots of data
 - Ian and jason to work on this
- Need to work on reproducibility

Beta-delayed Particle Emission

- Neutron and proton emission after beta decay now a working part of Geant4
 - β decay to discrete level
 - level decays by neutron or proton emission
- Decay to continuum not yet done
 - model required to decide what level β decay reaches probably easy just sample from a level density parameterization
 - particle emission from continuum → use precompound model?

Floating Levels

- Floating levels (X, Y, Z, U, V, W, A, B, C, D, E)
 - discrete levels in nucleus whose energy is unknown or poorly determined
 - a chain of well-defined decays may be built on an X-level, leaving absolute scale undetermined
 - currently dealing with these as unique states
 - ²³⁴Pa[73.92+X], for example, is a different ion than ²³⁴Pa[73.92]
- Decide how to handle
 - floating → floating, non-floating → non-floating OK
 - what about floating → non-floating and non-floating → floating?

What's Next

What's Next?

- Continue work on biasing
 - fix negative values bug in accumulated decay time spectra
 - use scoring instead
 - use generic biasing methods
- Resolve some floating levels
 - enough data to resolve several of them
 - Martin Venhart to work on this (but haven't heard from him)
- Implement reduced number of DB files
 - version already available for photon evaporation
 - do the same for RDM
 - binary DBs (Andrea, Makoto)

What's Next?

- More detailed atomic de-excitation code
 - Kibedi code a good possibility
 - any conflict with low energy EM?
- General code improvement
 - tests show Geant4 as a whole is CPU-bound
 - true for RDM?
- Decay Data Evaluation Project
 - international effort to analyze existing radioactive decay data and recommend best for most used nuclei
 - some Geant4 data already corrected using this (⁵⁵Fe)
 - will continue case-by-case corrections using DDEP

What's Next?

- Two more extended examples
 - demonstrate recently added decays (beta-delayed particle emission, etc.)
 - H*10 dose
- Only MIXMAX random number generator is free from artifacts (Alex)
 - all others have one problem or another
 - more testing?
- Implementation of double beta decay to continuum

Other Tasks

- Attach scorer to process for biasing (Makoto Asai)
- Check correctness of generic biasing in both at-rest and inflight modes (Marc Verderi)
- Allow assignment of G4Region to G4RadioactiveDecay
 - just like currently done with G4LogicalVolume?
- Check lower limit on lifetime
 - can we accommodate 10⁻¹⁴ s as needed for ⁹B decays?