Motivation	Introduction	Pair-production probabilities	The Landau-Pomeranchuk-Migdal effect

High Energy Gamma Conversion Models

Farah Hariri CERN-PH

25-09-2017


Motivation	Introduction	Pair-production probabilities	The Landau-Pomeranchuk-Migdal effect
Contents			

- 2 Introduction
- Pair-production probabilities
- 4 The Landau-Pomeranchuk-Migdal effect

Future Circular Collider (FCC)

- Long-term goal: push the energy frontier beyond LHC
- 100 km tunnel in the Geneva area - design driven by pp-collider (FCC-hh) requirements with possibility of a lepton (FCC-ee) and a lepton-hadron (FCC-he)
- 16 T \rightarrow 100 TeV in 100 km

Future Circular Collider (FCC)

- Conceptual Design Report CDR (to be concluded by 2018)
- Technical Design Report TDR (starting \sim 2020)

FCC software framework:

- Mainly parametrized fast simulation using **Delphes** for CDR
- Geant4 needed for TDR!

Challenge:

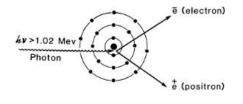
Extend Physics Models to High Energies

Motivation	Introduction	Pair-production probabilities	The Landau-Pomeranchuk-Migdal effect
Motivation			

- Reviewing all high-energy physics processes -in view of the increased LHC energy and even more importantly for the FCC design- is crucial ($\geq O(10 \text{TeV})$)
- Reviewing the pair-production model in particular, including the LPM suppression mechanism at high energies
- Also of interest to other fields

In astroparticle physics, new generation telescopes based on pair-production with minimized scattering will need accurate models describing angular resolution. Better description of pair-production detailed kinematics is therefore needed at low-energy ($\leq O(100 \text{MeV})$).

Motivation	Introduction	Pair-production probabilities	The Landau-Pomeranchuk-Migdal effect
Contents			



- Pair-production probabilities
- 4 The Landau-Pomeranchuk-Migdal effect

Different ways photons interact with matter: Photoelectric effect, Compton scattering, Rayleigh scattering, Raman scattering, and

Pair-production:

coherent: e^{-}/e^{+} pair is created in the field of the nucleus *incoherent*: pair is created in the field of an orbital electron

Motivation	Introduction	Pair-production probabilities	The Landau-Pomeranchuk-Migdal effect
Contents			

- 2 Introduction
- Pair-production probabilities
- 4 The Landau-Pomeranchuk-Migdal effect

Starting point:

Bethe and Heitler (1934) ¹: Unscreened Point Nucleus

For photons of energy $E_{\gamma} > 50$ MeV, and an electron (positron) of energy $E_{-}(E_{+})$, the differential cross-section (DCS) (in the *positron* variable) for pair-production is obtained as:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_{+}} = \frac{4r_{e}^{2}\alpha Z^{2}}{E_{\gamma}^{3}} \left(E_{+}^{2} + E_{-}^{2} + \frac{2}{3}E_{+}E_{-}\right) \left[\ln\left(\frac{2E_{+}E_{-}}{mc^{2}E_{\gamma}}\right) - \frac{1}{2}\right]$$

where α is the fine structure constant, r_e the electron radius,

Z the atomic number

 ¹H. Bethe and W. Heitler, Proc. Roy. Soc. (London), 1934
 < □ ▷ < ∂ ▷ < ≧ ▷ < ≧ ▷ < ≧ ▷ < ≧ ○</td>

 Farah Hariri, farah.hariri@cern.ch
 25-09-2017
 97

Starting point:

Bethe and Heitler (1934) ¹: Unscreened Point Nucleus

For photons of energy $E_{\gamma} > 50$ MeV, and an electron (positron) of energy $E_{-}(E_{+})$, the differential cross-section (DCS) (in the *positron* variable) for pair-production is obtained as:

Corrected and extended for various effects:

- the screening of the field of the nucleus
- correction to the Born approximation
- pair-creation in the field of atomic electrons
- the LPM suppression mechanism
- Nuclear recoil

¹H. Bethe and W. Heitler, Proc. Roy. Soc. (London), 1934

Tsai (1974) ²: Screened + Coulomb Correction + Atomic Excitation

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}E_{+}} &= \frac{r_{e}^{2}\alpha}{E_{\gamma}} \left\{ \left(\frac{4}{3} \frac{E_{+}^{2}}{E_{\gamma}^{2}} - \frac{4}{3} \frac{E_{+}}{E_{\gamma}} + 1 \right) \right. \\ &\times \left[Z^{2}(\phi_{1}(\gamma) - \frac{4}{3} \ln Z - 4f_{c}) + Z\left(\psi_{1}(\omega) - \frac{8}{3} \ln Z\right) \right] \\ &- \left. \frac{2}{3} \frac{E_{+}}{E_{\gamma}} \left(1 - \frac{E_{+}}{E_{\gamma}} \right) \left[Z^{2}(\phi_{1}(\gamma) - \phi_{2}(\gamma)) + Z(\psi_{1}(\omega) - \psi_{2}(\omega)) \right] \right\} \end{aligned}$$

where $\phi_1(\gamma)$, $\phi_2(\gamma)$, $\psi_1(\omega)$ and $\psi_2(\omega)$ are Z-dependent functions when the Thomas Fermi model of the atom is used.

 ²Y.-S. Tsai, Rev. of Modern Physics, Vol. 46, 4 (1974)
 < □ ► < ∂ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥

Motivation	Introduction	Pair-production probabilities	The Landau-Pomeranchuk-Migdal effect
Contents			

- 2 Introduction
- Pair-production probabilities
- 4 The Landau-Pomeranchuk-Migdal effect

Motivation

For simplicity, let us consider the bremsstrahlung process:

- Ultrarelativistic electron emits a low-energy photon $\implies q_{//}$ can be very small
- Uncertainty principle \rightarrow interaction takes place over a long distance, called *formation length*
- If anything happens to the electron or photon along this distance that disturbs their coherence, the emission of the photon will be suppressed
- The Landau-Pomeranchuk-Migdal (LPM) effect first discussed in ³ and slightly later in ⁴ is the suppression due to multiple scattering

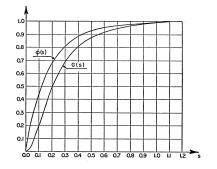
⁴Arkady B Migdal, Physical Review, 103(6):1811, 1956.

³Lev Davidovich Landau and II Pomeranchuk, Dokl. Akad. Nauk SSSR, volume 92, page 735, 1953.

• Pair-production differential cross-section including LPM:

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}\epsilon} &= 4\alpha r_e^2 Z(Z+\eta(Z)) \,\xi(s) \\ &\times \left\{ \left[\frac{1}{3} G(s) + \frac{2}{3} \phi(s) \right] \left[\epsilon^2 + (1-\epsilon)^2 \right] \left[\frac{1}{4} \phi_1 - \frac{1}{3} \ln Z - f_c \right] \right. \\ &+ \left. \frac{2}{3} G(s) \,\epsilon(1-\epsilon) \left[\frac{1}{4} \phi_2 - \frac{1}{3} \ln Z - f_c \right] \right\} \end{aligned}$$

with $\epsilon \equiv {\it E}_{+}/{\it E}_{\gamma}$

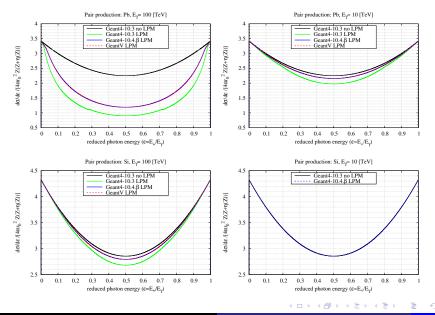

 θ_{ms} : the mean deflection angle due to multiple scattering along the formation length and θ_r : the mean emission angle

$$s\sim rac{ heta_r}{ heta_{ms}}$$
 LPM is effective when $~s\lesssim 1$

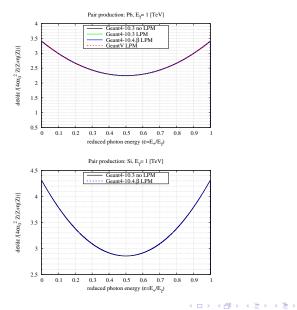
suppression is important when: $\theta_{ms} > \theta_r \rightarrow s < 1$ $\implies G(s) \rightarrow 0 \text{ and } \phi(s) \rightarrow 0$

absence of suppression when:

$$egin{aligned} & heta_{\it ms} < heta_{\it r} o {\it s} > 1 \ & \Longrightarrow {\it G}({\it s}) o 1 \ & {
m and} \ \phi({\it s}) o 1 \end{aligned}$$

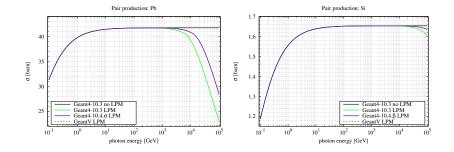


Motivation


First results:

- Reviewing the pair production model including LPM suppression showed an inconsistent calculation of the LPM suppression variable and the material dependent LPM energy in the model used by $Geant4 \leq 10.3$
- An improved LPM description, in accordance with the quantum mechanical calculations of Migdal ⁵ has been first implemented in a standalone code showing an improvement that would mostly affect heavy materials at FCC energies. This will be referred to as *GeantV LPM*.
- It is now integrated in Geant4. The improved Geant4 LPM will be referred to as *Geant4-10.4.* β LPM

⁵Arkady B Migdal, *Physical Review*, 103(6):1811, 1956. <



Farah Hariri, farah.hariri@cern.ch

æ

Notivation	Introduction	Pair-production probabilities	The Landau-Pomeranchuk-Migdal effect

æ

Summary:

- The LPM suppression is more important for heavier materials and more energetic gammas
- The old LPM in Geant4 overestimates the suppression
- For heavy materials, the *improved* LPM differs from the old one starting from few TeV gamma energy, which could be relevant for LHC
- For light materials, the improvement appears only above few tens of TeV gamma energy, relevant for FCC
- Improvement of LPM is already included in Geant4.10.04. β