
ATLAS GIT developer model

Andrea Dotti (adotti@slac.stanford.edu) ; SD/EPP/Computing

http://www.geant4.org

mailto:adotti@slac.stanford.edu
http://www.geant4.org/

Goal

ATLAS has a similar development model as Geant4 (based on tags,
and collection of tags)

They migrated recently to git from SVN

We could profit from their experience

See
https://jira-geant4.kek.jp/projects/GIT/issues/GIT-9?filter=allopeniss
ues for a complete discussion

https://jira-geant4.kek.jp/projects/GIT/issues/GIT-9?filter=allopenissues
https://jira-geant4.kek.jp/projects/GIT/issues/GIT-9?filter=allopenissues

ATLAS & git
Migrated to GIT from SVN

ATLAS had a very similar development model as Geant4:
1. Based on SVN and tags per directory/package (i.e. equivalent to G4 categories)
2. A tagcollector (i.e. equivalent to our tags database) to collect tags for release
3. A testing system based on nightlies

Important difference ATLAS vs Geant4:
Very large code base (x5 times ours), very large developer community, thus many
aspects of ATLAS development work-mode are in place to support this (e.g. three
separate layers of shifter, equivalent to our system testing)

With the migration to git the concept of tags is replaced by Merge Requests. Built-in
into git{hub,lab}

General feedback from ATLAS is very positive, despite some rough beginnings (one
developer told me: “At beginning I was skeptical about the move from SVN to GIT for
ATLAS, now I am fully supporting it”)

ATLAS development
Each developer forks repository (probably not
needed for G4): cope with large number of
people involved

MRs are initiated on the master of the
shared collaboration repo

● Branches exists for the various releases
being supported

Master should always be stable (G4
equivalent: latest reference + all accepted
tags)

● A git tag is done on master each evening

master

release X.Y.Z
developer:
feature-branch

ATLAS development: proposing
A MR is the act of requesting the code
from the developer to be merged back
into the shared repository

Important:
● The MR cannot be done if code conflicts

are present (automatic procedure)
● The MR does not change the repository

unless all tests are passed (a human
must accept after reviewing code and
testing results)

A MR is similar, in today system, to
proposing a tag

master

release X.Y.Z
developer:
feature-branch

ATLAS development: testing
A MR will trigger automatic testing:
On a dedicated machine the master is checkout, the MR is
applied, the code is built and relevant tests are run (our
continuous testing). This is called CI (Continuous
Integration)

If everything is green, the MR is reviewed by a shifter (in
ATLAS there are 3 levels of shifters: non-expert, expert,
guru; the equivalent of our stt shifter)

If the reviewer(s) gives also the green light, the MR has
passed testing and goes to the final review by the release
coordinator

This process is similar, in today system, to selecting
a tag

master

release X.Y.Z
developer:
feature-branch

ATLAS development: merging
MR can be processed in parallel:
1. On one machine only MR1 is applied to the master

and the procedure of the previous slides applies
2. On another machine only MR2 is applied to the

master

The release coordinator accepts in sequence the MR in the
master, but can accept MR2 before MR1 is accepted (e.g.
if MR1 needs refinement from the author).
Possible conflicts may now arise, but these are rare even
in the case of ATLAS.

Accepting the merge request by release coordinator
is similar, in today system, to accepting a tag

master

developer1:
feature-branch

MR 1

MR 2

The role of nightlies
Each evening a tag on the current master (i.e. including
all accepted MR) is created and a full test suite with longer
applications is run

It may happen that a new error appears in this phase, the
release coordinator does a git revert to remove the
offending MR and requests the developer to fix the issue

This process is similar to rejecting a tag

master

MR 1

MR 2

MR 3

tag: 2017_Sep_22_h1930

tag: 2017_Sep_23_h1930

Conclusions

ATLAS system can be adapted (after simplifications) to Geant4

It similar to our current system and thus should ease transition

The role of developers is increased: they are responsible to
checking the continuous results (if not green the shifter does not
even see the MR)

The role of continuous integration is fundamental and we
should review the list of our tests: move some of the faster examples
to continuous?

Thank you

S. Farrell, V. Tsulaia, C. Leggett @ Berkeley Lab for their time to
discuss this issues

