Study of α-cluster structure in 22Mg using radioactive ion beam

S. M. Cha
Sungkyunkwan University
Exp. Nuclear Astrophysics Lab
OVERVIEW

• INTRODUCTION

• EXPERIMENT

• ANALYSIS

• SUMMARY
INTRODUCTION

Cluster structure in Nuclei

A=4N, A=Z nuclei (like 16O)

H. Yamaguchi, PLB 766, 11 (2017)
INTRODUCTION

Similarity of Mirror nucleus

M. Freer et al., PRC 85, 014304 (2012)

Fu et al., PRC 77, 064314 (2008)

HOW ABOUT 22Mg and 22Ne??!!!
INTRODUCTION

HOW ABOUT 22Mg and 22Ne??!!

<table>
<thead>
<tr>
<th>J^π</th>
<th>E_x (MeV)</th>
<th>θ_α^2 (%)</th>
<th>Γ (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-$^-$</td>
<td>12.14</td>
<td>11.5</td>
<td>63</td>
</tr>
<tr>
<td>1-$^-$</td>
<td>13.04</td>
<td>6.7</td>
<td>92</td>
</tr>
<tr>
<td>3-$^-$</td>
<td>12.46</td>
<td>11.6</td>
<td>18</td>
</tr>
<tr>
<td>3-$^-$</td>
<td>13.19</td>
<td>11.7</td>
<td>52</td>
</tr>
</tbody>
</table>

Dufour et al., NPA 726, 53 (2003)

• GCM calculation predicts α-doublets.

But, missing!

Goldberg et al., PRC 69, 024602 (2004)
INTRODUCTION

We performed...

\(^{18}\text{Ne}(\alpha,\alpha)^{18}\text{Ne}\) scattering measurement!

GOAL OF THE EXPERIMENT?

- To search for the missing and unknown states of \(p\)-rich \(^{22}\text{Mg}\) nucleus in the \(E_x = 8.6-17\) MeV

- To extract \(\alpha\)-cluster structure information by extracting the \(\alpha\)-widths, spins, parities, ...
EXPERIMENT

WHERE?

At CRIB in RIKEN Nishina Center!
EXPERIMENT

HOW TO?

- Thick Target Method in Inverse Kinematics

\[^{18}\text{Ne beam} \]

\[^{4}\text{He gas (thick target)} \]

\[^{18}\text{Ne stopped} \]

\[\alpha \]

Silicon Detectors
EXPERIMENT

HOW TO?

- Thick Target Method in Inverse Kinematics

\[\frac{d\sigma}{d\Omega} \]

\[E \]

\[^{4}\text{He gas} \]

\[^{18}\text{Ne beam} \]

Beam energy loss...
EXPERIMENT

18Ne RI beam production at F0

Via 16O(3He,n)18Ne
EXPERIMENT

18Ne RI beam production at F0

- LN$_2$ cooling system (~90K) for enough target thickness
- 360 Torr of 3He gas → 1.54mg/cm2
- 18Ne beam intensity increased than normal R.T.
Primary beam

<table>
<thead>
<tr>
<th>Energy</th>
<th>Current</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{16}\text{O}^{6+}$</td>
<td>8.03 MeV/u</td>
<td>~ 260 pnA</td>
</tr>
</tbody>
</table>

Secondary beam

<table>
<thead>
<tr>
<th>Energy @ F3</th>
<th>Intensity @ F3</th>
<th>Purity @ F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{18}\text{Ne}^{10+}$</td>
<td>~ 2.75 MeV/u</td>
<td>$\sim 3 \times 10^5$ pps</td>
</tr>
</tbody>
</table>
Beam ID at F2

- Parallel plate avalanche counter (PPAC) for timing information
- SSD (1500μm) for energy measurement
- Particle Identification by time-of-flight vs Energy
Beam ID at F2

Experiment

Calculation
EXPERIMENT

$^{18}\text{Ne}(\alpha,\alpha)^{18}\text{Ne}$ measurement at F3 focal plane

- Beam tracking by two delay-line type PPACs
 (Kumagai et al., NIM A 470, 562, 2001)
- Recoiling α particles measurement by silicon detectors
EXPERIMENTAL METHOD

F3 PPACs for beam tracking & beam ID

• Beam ID by Position vs time-of-flight
• Handling rate ~ 5x10^5 pps, Position resolution ~ 2mm
EXPERIMENT

F3 Telescopes

- Calibrated by an α-emitting source, α-beams (13-, 15-, 20-, 25MeV)

2017.11.17 International Conference on Accelerators and Beam Utilization 2017 HICO, Gyeongju
F3 Telescopes

- ΔE (20µm, X strip) + E_1 (496µm, Y strip) + E_2 (485µm)
- ΔE (20µm, X strip) + E (1500µm, Y strip)
EXPERIMENT

F3 target: ^4He, 470Torr // Ar, 87 Torr

- ^4He gas run for main measurement (~100 hours)
- Ar gas run for the background subtraction (~35 hours)
\(^{18}\text{Ne}(\alpha,\alpha) :\) PID

- **Standard Energy Loss Technique for Particle ID**
- **No significant contaminations from other particles**
$^{18}\text{Ne} (\alpha, \alpha)$: comparing two spectra

Yields

^4He gas measurement

Ar gas measurement

Energy of alpha particles
$^{18}\text{Ne}(\alpha,\alpha) :$ comparing two spectra

Yields

4He gas measurement
Ar gas measurement

Energy of alpha particles

originated from production target...
ANALYSIS

$^{18}\text{Ne}(\alpha,\alpha)$: Energy reconstruction

• Converting E_α to $E_{\text{c.m.}}$ of the $^{18}\text{Ne} + \alpha$ system

$$E_{\text{c.m.}} = \frac{M_{\text{Ne}} + M_\alpha}{4M_{\text{Ne}} \cos^2 \theta_{\text{lab}}} E_\alpha$$

• Needs detailed calibration b/w two measurement
$^{18}\text{Ne}(\alpha,\alpha)$: alpha spectrum

- Resonance-like peaks
- Detailed analysis is ongoing!
- Hope to see missing states in the previous works
$^{18}\text{Ne}(\alpha,\alpha)$: Further analysis

- Extract excitation function

$$\frac{d\sigma}{d\Omega_{\text{c.m.}}}(E_{\text{c.m.}}, \theta_{\text{c.m.}}) = \frac{1}{4\cos\theta_{\text{lab}}} \frac{\text{Yields}}{I\cdot N\cdot \Delta\Omega_{\text{lab}}}$$

- Comparing with theoretical R-matrix calculation
- Energy level properties (spin, parity, α reduced width..)
- The α-cluster study in ^{22}Mg will be investigated!
SUMMARY

• The $^{18}\text{Ne}(\alpha,\alpha)^{18}\text{Ne}$ scattering was measured at CRIB in inverse kinematics in order to study the α-cluster structure in proton-rich ^{22}Mg nuclide.

• By adopting the thick target method, a wide range of excitation energy of ^{22}Mg ($E_x = 9.9 - 16.5$ MeV) was investigated.

• Scattered α particles were measured by silicon detector telescopes.

• Measured energy of α particle was converted to center-of-mass energy of $^{18}\text{Ne}+\alpha$ system.

• The contribution from the background α particle was considered by measuring with argon gas target.

• By comparing the empirical excitation function with the theoretical R-matrix calculation, the energy level properties of ^{22}Mg will be extracted.

• The α-cluster structure in proton-rich ^{22}Mg nuclide will be investigated as well.
THANK YOU!

2017.11.17
International Conference on Accelerators and Beam Utilization 2017
HICO, Gyeongju
EXPERIMENTAL METHOD

Inelastic ??

- Time difference
 - A. Kim et al., PRC 92, 035801 (2015)

- Peak shift method
 - J.J He et al., PRC 76, 055802 (2007)
 - (120-, 160keV at $\theta_{lab}=0^\circ$, 30°)
EXPERIMENT

18Ne Beam ID at F2 & F3 focal planes

- Energy (SSD) & Timing (PPAC) measurement at F2
- Position & Timing measurement (PPACs) at F3
Reaction vertex?

- Comparing the calculated E_α and the measured E_α

- Energy loss calculation by SRIM code
 J. Ziegler et al.
EXPERIMENT

F3 PPACs for beam tracking

- **Delay-line type** (Kumagai *et al.*, NIM A 470, 562, 2001)

- **Handling rate** ~ 5×10^5 pps, **Position resolution** ~ 2 mm
INTRODUCTION

$^{22}\text{Ne} - \text{GCM calculation}$

- 0_2^- band: Clustering!
- Predicts $1^-, 3^-, 5^-$ states

 $(11.47, 12.58, 14.77\text{-MeV})$
- Consistent with experimental data

 $(11.47, 12.88\text{-MeV})$

```
<table>
<thead>
<tr>
<th>$J^\pi$</th>
<th>$E_{\text{exp}}^\pi$</th>
<th>$E_{\text{GCM}}^\pi$</th>
<th>$E_{\text{GCM}}^{\text{c.m.}}$</th>
<th>$\theta_0^\pi$</th>
<th>$\theta_2^\pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^-</td>
<td>7.05</td>
<td>-2.36</td>
<td>7.31</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>2^-</td>
<td>7.66</td>
<td>-1.85</td>
<td>8.05</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>3^-</td>
<td>7.72</td>
<td>-1.62</td>
<td>7.82</td>
<td>0.02</td>
<td>0.13</td>
</tr>
<tr>
<td>4^-</td>
<td>9.07</td>
<td>-0.31</td>
<td>9.36</td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td>5^-</td>
<td>10.61</td>
<td>0.31</td>
<td>10.08</td>
<td>0.01</td>
<td>0.21</td>
</tr>
<tr>
<td>6^-</td>
<td>11.11</td>
<td>2.50</td>
<td>12.17</td>
<td></td>
<td>0.27</td>
</tr>
<tr>
<td>7^-</td>
<td>11.48</td>
<td>3.36</td>
<td>13.13</td>
<td>9.7 x 10^{-4}</td>
<td>0.54</td>
</tr>
<tr>
<td>8^-</td>
<td>6.53</td>
<td>16.20</td>
<td></td>
<td></td>
<td>0.64</td>
</tr>
</tbody>
</table>

P. Descouvemont, PRC 38, 2397 (1988)```
### INTRODUCTION

#### $^{22}$Ne – ETCM calculation

<table>
<thead>
<tr>
<th>ETCM calculation</th>
<th>Experimental data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J^\pi$</td>
<td>$E_x$ (MeV)</td>
</tr>
<tr>
<td>1$^-$</td>
<td>12.58</td>
</tr>
<tr>
<td>1$^-$</td>
<td>13.53</td>
</tr>
<tr>
<td>3$^-$</td>
<td>12.92</td>
</tr>
<tr>
<td>3$^-$</td>
<td>13.69</td>
</tr>
<tr>
<td>5$^-$</td>
<td>13.68</td>
</tr>
<tr>
<td>5$^-$</td>
<td>14.69</td>
</tr>
<tr>
<td>7$^-$</td>
<td>18.79</td>
</tr>
<tr>
<td>7$^-$</td>
<td>19.56</td>
</tr>
<tr>
<td>9$^-$</td>
<td>20.85</td>
</tr>
<tr>
<td>9$^-$</td>
<td>21.84</td>
</tr>
</tbody>
</table>

- Observed the splitting of $\alpha$-clustering states
  
  Rogachev et al., PRC 64, 051302 (2001)

- ETCM results predict doublet states ($1^-, 3^-, 5^-, 7^-$)
  
  Dufour et al., NPA 726, 53 (2003)

- Experimental & Theoretical studies were consistent.
### INTRODUCTION

**22Ne – ETCM calculation**

<table>
<thead>
<tr>
<th>ETCM calculation</th>
<th>Experimental data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J^\pi$</td>
<td>$E_x$ (MeV)</td>
</tr>
<tr>
<td>1-</td>
<td>12.58</td>
</tr>
<tr>
<td>1-</td>
<td>13.53</td>
</tr>
<tr>
<td>3-</td>
<td>12.92</td>
</tr>
<tr>
<td>3-</td>
<td>13.69</td>
</tr>
<tr>
<td>5-</td>
<td>13.68</td>
</tr>
<tr>
<td>5-</td>
<td>14.69</td>
</tr>
<tr>
<td>7-</td>
<td>18.79</td>
</tr>
<tr>
<td>7-</td>
<td>19.56</td>
</tr>
<tr>
<td>9-</td>
<td>20.85</td>
</tr>
</tbody>
</table>

- Observed the splitting of $\alpha$-clustering states  
  Rogachev et al., PRC 64, 051302 (2001)

- ETCM results predict doublet states (1-,3-,5-,7-)  
  Dufour et al., NPA 726, 53 (2003)

- Experimental & Theoretical studies were consistent.
INTRODUCTION

\( ^{22}\text{Ne} \) – Hybrid GCM calculation

\[ \begin{array}{c|c|c} \hline J^\pi & E_x \text{ (MeV)} & \theta_\alpha^2 \text{ (%)} \\ \hline 1^- & 14.8 & 8.7 \\ 3^- & 15.2 & 9.1 \\ 5^- & 16.8 & 9.0 \\ 7^- & 18.9 & 10.3 \\ 9^- & 22.5 & 11.7 \\ \hline \end{array} \]

\[ \begin{array}{c|c|c} \hline J^\pi & E_x \text{ (MeV)} & \theta_\alpha^2 \text{ (%)} \\ \hline 1^- & 12.58 & 13 \\ 1^- & 13.53 & 8 \\ 3^- & 12.92 & 13 \\ 3^- & 13.69 & 11 \\ 5^- & 13.68 & 23 \\ 5^- & 14.69 & 100 \\ 7^- & 18.79 & 52 \\ 7^- & 19.56 & 81 \\ \hline \end{array} \]

- \( ^{18}\text{O} + \alpha \) cluster model?
- Predicts new singlet states with negative parities \((14 < E_x < 23 \text{ MeV})\)
- No experimental data is available for \( ^{22}\text{Mg} \) case!

M. Kimura, PRC 75, 034312 (2007)