Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

Rachel Margraf Supervisor: Nikolaos Charitonidis

Goliath Field Mapping performed in collaboration with:

- Nikos Charitonidis & Yiota Chatzidaki (EN-EA-LE)
- EP/DT magnet group (Felix Bergsma & Pierre-Ange Giudici),
- Henric Wilkens and the kind support of RD51 Collaboration (Eraldo Oliveri & Yorgos Tsipolitis) and GIF++.
- Field mapping interpolation script written by Marcel Rosenthal

H4 Beam Line

- Protons extracted from the SPS are incident on a target to form secondary beam lines of a variety of particles
 - The H4 beam line in the North Area supplies GIF++ with charged particles

August 9, 2017

Rachel Margraf

GIF++

- CERN's Gamma
 Irradiation Facility
 - Supplies users with a mixed field of charged particle beams and gamma photons
 - For this project, we are interested in supplying GIF++ with a muon beam

Sharing a Muon Beam

- Upstream GIF++ is a large dipole magnet, "GOLIATH"
- This magnet is used by experiments such as RD51 to test equipment in conditions of strong magnetic fields and charged particle beams
- Muons still reach GIF++ after passing through the magnet, however, their trajectory is bent
- Goal: determine muon trajectory so that GIF++ users can continue to receive muons while Goliath is on

Modeling the H4 Beam Line - Steps

- Model shielding upstream GIF++ Hall using G4beamline software
- Simulate exact muon beam position under several different conditions:
 - GOLIATH at -1.5,-1, 0, 1, 1.5T
 - XTDV Dumps open/closed
- Measure the magnetic field map for Goliath and refine simulations using this map

August 9, 2017

XTDV beam dumps modeled in "open" (left) and "closed" (right) configurations

Rachel Margraf

G4beamline Model of H4 Beam Line

GIF++ 3.2m Iron Segment

QNL Quadrupoles 16a & 16b

Collimators 9 & 10

August 9, 2017

Beam Dumps

Rachel Margraf

Analysis Points

Collimators 9 & 10 Detector "Downstream Collimator" (5mm after collimator) Goliath (Coil diameter 3.4m)

Detector "Upstream Goliath" Upstream edge of coil Detector "Downstream Goliath" Downstream edge of coil

August 9, 2017

Ζ

Ζ

X ⊂3

Analyzing Simulation in ROOT (1.5T)

Events

August 9, 2017

Analyzing Simulation in ROOT (-1.5T)

August 9, 2017

Locations with Usable Beam

With these simulations, we can advise GIF++ users on where to place their equipment to receive muons and gamma photons while Goliath is on

August 9, 2017

Mapping of Goliath

- To refine these and future simulations, need up to date magnetic field map of Goliath
- I spent several days working with a team to measure the magnetic field of Goliath (July 4-6, Aug 2-4)

August 9, 2017

Field Maps

I constructed **ROOT** macros to plot our field measurements, and utilized Mayavi and Matplotlib Python packages to produce vector plots of our field map

August 9, 2017

Vertical Sensors Magnetic Field Map (1.5T Design Setting)

Final Remarks

- Last step is to incorporate the field map of Goliath into the G4beamline simulation
 - These simulations will allow GIF++ users to place their equipment correctly in the muon beam while Goliath is on
 - Allows users of Goliath and GIF++ to share a muon beam on the H4 beam line
- Future analysis could also examine additional steering of the muon beam by placing another dipole downstream Goliath

Rachel Margraf

Y axis (mm)

Special thanks to the UM-CERN REU program, funded by the National Science Foundation, for making this experience possible!

August 9, 2017

Dump 3

Detector "Back Wall GIF"

Detector "Center GIF"

Detector "Front Nook GIF" Detector "Front Wall GIF"

Dump 2 Detector "Upstream GIF"

Questions?

Producing a Muon Beam

August 9, 2017