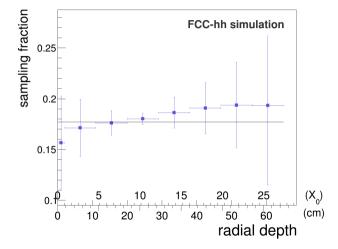

Energy resolution - corrections

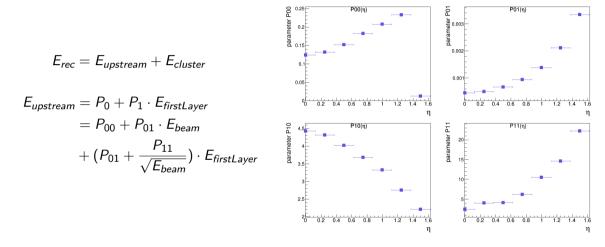
Energy resolution for up to $\eta = 1$, B = 4 T

- correction for the varying sampling fraction and for the upstream material
- first layer of 2 cm for upstream material correction
 - \blacktriangleright + 7 layers of 9 cm,
 - making total of 65 cm.
- ► for larger η the resolution degrades especially for low energies ► slide 11

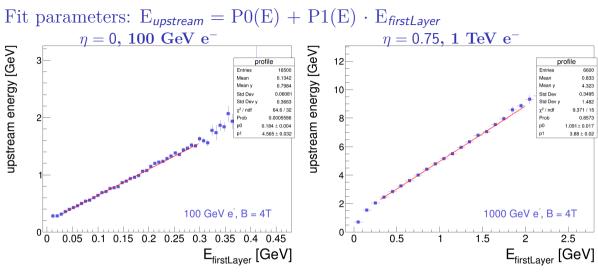


Impact of corrections on energy resolution, $\eta = 0$, B = 4 T

- ▶ no correction \rightarrow just scaled energy deposits (to E_{beam})
- ► sampling fraction correction → calibration of deposited energy with sampling fraction calculated for 8 layers
- ► upstream material correction → additional to sampling fraction correction


0.05 energy resolution $\eta = 0$ no correction: $\frac{\sigma_{E}}{E} = \frac{10.91\%}{\sqrt{E}} + 1.24\%$ 0.04 + sampling fraction correction: $\frac{\sigma_E}{E} = \frac{9.65\%}{\sqrt{E}} + 0.77\%$ $\sigma_{\rm E_{\rm rec}}/\langle {\rm E_{\rm rec}} \rangle$ + upstream material correction: $\frac{\sigma_E}{E} = \frac{7.85\%}{\sqrt{E}} + 0.74\%$ 0.03 0.02 0.01 200 400 600 800 1000 E_{heam} [GeV]

Sampling fraction in 8 layers, B = 4 T

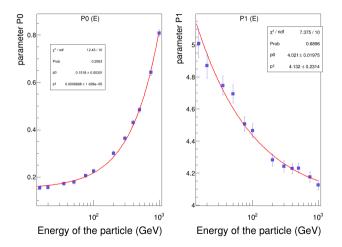


- \blacktriangleright 1 x 2 cm + 7 x 9 cm layers
- calculation for 80k e⁻ with the energy 50 - 200 GeV

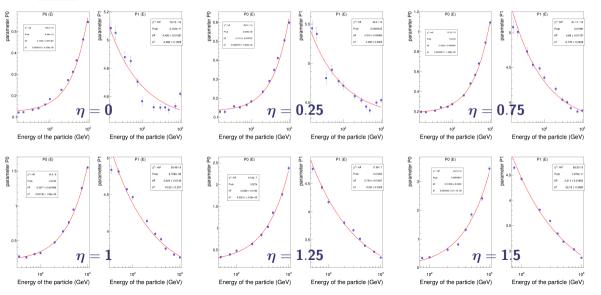
Upstream material correction, B = 4 T

- ▶ first layer of 2 cm
- \blacktriangleright linear fit
- ▶ fit range set individually for each energy and eta value

Upstream material correction, B = 4 T

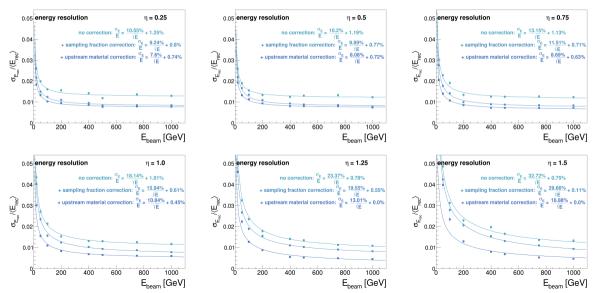

$$E_{rec} = E_{upstream} + E_{cluster}$$

$$E_{upstream} = P_0 + P_1 \cdot E_{firstLayer}$$


right plot for $\eta=0.5$

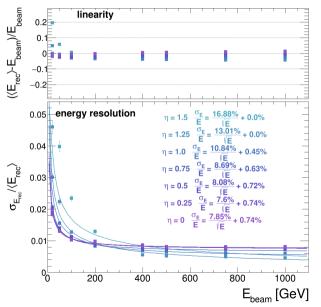
• plots for more η values

 \blacktriangleright how P_0 and P_1 are obtained



Upstream material correction parameters $(\eta = 0.5)$

Impact of corrections on energy resolution


($\eta = 0$ Little improvement from sampling fraction correction for higher η - should the sampling fraction be η dependent?

Energy resolution: after corrections, B = 4 T

- for η > 1 the upstream material correction parameters are extracted for energies larger than:
 - ▶ 30 GeV (for $\eta = 1.25$)
 - ▶ 50 GeV (for $\eta = 1.5$)
- large nonlinearity for lower energies

• only $\eta < 1$

