ATLAS Expected Performance at HL-LHC
-Workshop on the physics of HL-LHC, and perspectives at HE-LHC-

Nora Pettersson
on behalf of the ATLAS Collaboration
1. Short summary of the planned upgrade for Phase-I/II for the ATLAS detector

- Complete replacement of the tracker
- Calorimeters to replace electronics, readouts and power supplies
- Complete revision of the trigger system
- New inner muon barrel trigger chambers
- Possible timing detector
- Possible forward muon tagger

2. Expected performance of the upgraded Phase-II ATLAS detector

- How to face the challenge of going up to an average of 200 interactions per bunch crossing as is expected for luminosities of $7.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- Tracking, vertexing, pile-up mitigation, missing energy, jets, electrons, photons, muons, b-tagging, …
Phase-II Inner Tracker Upgrade

- The current Inner Detector (ID) will need to be replaced to keep the excellent tracking performance at HL-LHC environment
 - Radiation dosage severe for the inner most layers – approaching end of life during Run-3
- HL-LHC environment demands
 - Increased radiation hardness
 - Higher granularity of pixel detector to reduce the occupancy and to handle the high pile-up environment
 - Reduction of material to benefit tracking and calorimeter performance
 - Extended coverage of the tracking volume up to $|\eta| < 4.0$ mainly to identify pile-up jets and mitigate their effect
Phase-II Inner Tracker Upgrade

- **The Pixel detector** consists of five barrel layers with inclined sensors starting from $|\eta| > 1.0$
 - Reduces the material traverse by particles and improves tracking performance (and energy measurements of the calorimeter)
 - Less silicon surface than a traditional barrel needed to cover the same detector volume
 - Endcap rings replacing traditional disks to improve the coverage and at cost of less silicon surface
 - Two pixel pitches still under consideration 50x50 or 25x100 μm^2 - current ID using 50x250 (400) μm^2
 ▶ All results presented are using 50x50 μm^2

- **The Strip detector** consist of four strip barrel layers with six endcap disks on each side of the barrel
 - Covering up to $|\eta| < 2.6$
 - Modules at a stereo angle of 52(40) mrad for barrel (disks) to provide two dimensional measurements
Phase-II Liquid Argon Upgrade

- ATLAS Liquid Argon (LAr) Calorimeters
 - EM calorimeter $|\eta| < 3.2$
 - Hadronic calorimeter for $1.5 < |\eta| < 4.9$
- Calorimeters expected to fully operational at HL-LHC
- *For HL-LHC* a total replacement of the electronic readouts and low voltage powering is planned
- Main motivations for the upgrade
 - Required by restricted radiation tolerance of current front-ends
 - Present readout system will be incompatible with the planned upgrade of the ATLAS trigger system
 - Necessary to avoid degradation of performance in high pile-up environment
 - Allows for partial suppression of out-of-time pile-up effects
- New readout architecture more acquiescent
 - Will allow for higher resolution information of the calorimeters to be available at the lowest level of the trigger system
- This yields enhanced capabilities to develop trigger algorithms to benefit *physics*!

2017-10-30

N.Pettersson (UMass)
Phase-II Tile Calorimeter Upgrade

• The Tile Calorimeter (TileCal)
 - The hadronic calorimeter that captures about 30% of the jet energy
 - Total coverage for $|\eta| < 1.6$

• Calorimeters and optics expected to operate without problems at HL-LHC

• *Phase-II upgrade* to replace all front-end and back-end electronics and the power supplies
 - Outdated readout electronics and on-detector components to suffer from increased radiation dosage
 - HL-LHC dosage an order of magnitude larger than design values for the current components

• Yield significant improvements of the readouts
 - Full information from TileCal available for the trigger system at 40MHz
Phase-II Trigger and Acquisition Upgrade

• A complete upgrade of the Trigger and Acquisition (TDAQ) is required to cope with the conditions at HL-LHC

• Phase-I:
 ◆ Calorimeter information available at higher granularity at hardware level
 ◆ Hardware tracking - Fast Tracker (FTK)
 ◆ Including tracking information at trigger level-1
 ◆ Increased coverage of the muon triggers

• Phase-II:
 ◆ The readout capacity is increased from 100kHz to 1 MHz and the output data are increased from 1 kHz to 10 kHz
 ◆ Tracking information to be made available earlier in the trigger architecture
 ◆ Full Calorimeter granularity at the hardware trigger level
High-Granularity Timing Detector

- **Under consideration:** Forward timing detector
 - Located at just outside of the ITk envelop at $z \sim 3500$ mm and spans 120 to 640 mm in r
 - Cover the forward region $2.4 < |\eta| < 4.2$
 - Consists of four silicon layers
 - $1.3 \times 1.3 \text{ mm}^2$ silicon pads

- Expected 180 ps spread of collisions at HL-LHC
 - A time resolution of 30 ps helps assign a collision vertex to every charged particle
 - Additional information to help with resolving low momentum particles from pile-up interactions
 - Especially, in the very forward region where ITk impact parameter resolution is of $\mathcal{O}(mm)$
 - Improves general performance due to pile-up suppression
 - Capabilities for luminosity monitoring
Phase-I/II Muon Upgrade

- Upgrades needed to the whole Muon Spectrometer (MS)
 - Motivated by the need to meet demands on the trigger and partial detector replacements to maintain performance
- Upgrades to the trigger and readout electronics
 - Partial upgrades to front-ends and power systems

- **Phase-I:**
 - Installation of the New Small Wheel (NSW) with Micromegas (MM) and small-strips Thin Gap Chambers (sTGC)
 - Upgrades to the inner barrel resistive plate chambers (RPC)

- **Phase-II:**
 - Major upgrades to the barrel to increase acceptance and robustness
 - New inner RPC stations to allow for down to 2 out of 4 layer coincidence
 - To make place for the RPCs, some of the old Monitored Drift Tubes (MDTs) are to be removed
 - MDTs information to be added at the hardware trigger to improve the turn-on
 - Investigating the addition of a high-\(\eta\) tagger
Expected Performance of the Phase-II ATLAS
Phase-II Tracking Performance

- High tracking efficiency over the full acceptance for single muons
 - For momentum $p_T > 10$ GeV the efficiency is greater than 99% for the central region
 - Slight degradation in the very forward region due to not yet fully optimised reconstruction and layout

- Great performance for single events such as $t\bar{t}$
 - Efficiency from 95% to 85% for $\mu = 0$
 - Similar or higher than the current ATLAS ID for the full η-range
Phase-II Tracking Performance

- The future tracker must be able to cope with the environments at HL-LHC
 - Track reconstruction efficiency versus μ extremely stable for all intervals of η
- Inclusive rate of the reconstructed tracks over the generated particles
 - Likewise the efficiency, these rates are independent of pile-up for the inclined layout
 - Indicates that there are no problems with increased number of fakes
Phase-II Tracking Performance

- Excellent capability to resolve the position and momentum
- Transverse impact parameter (IP) resolution d_0 similar to current ID
 - Run-2 performance better at very high momentum due to analogue clustering calibration while such calibrations are not yet ready for the ITk
 - ITk with analogue clustering expected to provide similar resolutions as for the current ID
- Significant improvements in the longitudinal IP resolution z_0
 - Reduction of pixel pitches from 250 and 400 μm to 50 μm for ITk
- Momentum resolution substantially improved by high precision measurements along the full track length provided by the full silicon tracker

![Graphs showing performance](image-url)
Phase-II Vertexing Performance

- The new tracker presents high vertex reconstruction efficiency
 - Close to 99% for $t\bar{t}$ at $\mu = 200$
- Good efficiency for identifying the Hard-Scatter (HS) interaction
- Demonstration of significant improvements for $Z \rightarrow \mu\mu$ and $VBF H \rightarrow \gamma\gamma$ gain by forward tracking
 - Low ($|\eta| < 2.7$) versus Reference ($|\eta| < 3.6$)

- Maintaining excellent vertex position resolutions in the transverse and longitudinal directions
 - Slight pile-up dependency on the resolution
 - Picking up more and more pile-up tracks that might impact the vertex fit negatively
 - However, only minor degradation of 1 μm for r and 2 μm for z when going to high average local pile-up densities for $t\bar{t}$
Phase-II Muon Trigger Performance

- The current barrel trigger requires three layer coincidence 3/3 in the RPC
 - Holes in coverage caused by magnet supports limit trigger acceptance
- Upgrades to barrel will allow for 3/4 instead
 - Increasing acceptance of the barrel trigger from 82% to 90%
- Excellent trigger efficiency even in the worst case scenario for HL-LHC run conditions
 - HV reduced to maintain the chamber currents
 - Considering a safety limit of a factor of two
Phase-II Muon Reconstruction

- Expected to keep the same high muon reconstruction efficiency
 - Same performance as the current ATLAS with a degradation of ~1.5% with $\mu = 200$
 - Cavern background yields further efficiency losses which are expected to be improved by the NSW

- Minor impact on the mass resolution for $Z \rightarrow \mu\mu$ going from $\mu = 0$ to $\mu = 200$
 - Further optimisations of the selection are expected to improve measurement $\mu = 200$

- Main change of the $\sigma(p_T)$ comes from ITk
 - p_T range where the resolution is dominated by the tracker increased from around 100 GeV to 250 GeV for $|\eta| = 0.1$ from the current ID to the ITk
 - $\sigma(p_T) = 1 - 2\%$ for $|\eta| < 1.0$ versus 1.5-3% for current ATLAS for the low p_T-range

 Significant improvements in the barrel region for the high momentum range
 - Minimal improvements are seen in the forward regions compared to the current detector are expected since resolution in the forward region is dominated by the MS measurements
Phase-II Pile-up Mitigation

- Utilise tracking and vertexing information to aid jet and MET reconstruction via pile-up suppression
 - Extended coverage of the tracker improves the capabilities to identify pile-up jets

- R_{pT} defined as the scalar sum of p_T of tracks within the jet-cone and associated to the HS vertex divided by the jet p_T
 - Small values correspond to a low fraction of tracks from the HS and have high probability of being pile-up jets

- ITk helps reduce the pile-up jets by a factor of 50
 - Translates into 2% efficiency for pile-up jet
 - Studies here and in the following slides use no timing information

- Assuming a factor 50 pile-up rejections yields
 - 84%, 80% and 75% efficiency for HS jets for $|\eta| < 1.5$, $1.5 < |\eta| < 2.9$ and $2.9 < |\eta| < 3.8$ respectively

N.Pettersson (UMass)
Phase-II Jet Reconstruction

- Pile-up mitigation top priority for jet reconstruction
 - Leading jet mass increasing with pile-up
- Typical boosted signature with jet radius $R = 1.0$ for $Z' \rightarrow t \bar{t}$
 - Leading jet mass shown for before and after grooming and applying pile-up corrections
 - Reducing pile-up dependency and regaining jet mass resolution
Phase-II MET Resolution

- E_T^{miss} computed as the vector sum of high momentum objects and soft term from low momentum particles
 - Soft-term calculated from tracks associated to the HS vertex
- Good capabilities to identify pile-up tracks are critical E_T^{miss} calculation
 - Extended tracker coverage from the ITk from $|\eta| < 2.7$ to $|\eta| < 4.0$ demonstrates 30% improvements on the $E_{x,y}^{miss}$ resolution
 - Mainly owning to pile-up suppression
 - But also small gain via the soft-term
Phase-II Electron Reconstruction Performance

• Using same reconstruction and selection as for current ATLAS
 ◆ Efficiency and fake rates similar to ATLAS performance in Run-I

• Run-II introduced optimised identification in form of MVA
 ◆ Utilising tracking and calorimeter variables

• Improvements are expected with ITk optimised identification
 ◆ Will re-gain at least same the performance of Run-II
Phase-II Photon Reconstruction Performance

- Energy resolution for unconverted photons
 - Using the same reconstruction as for the current ATLAS and applying noise estimated from the current electronics
 - Shown for the very central η-region
 - Comparing the resolution for $\mu = 0$ to $\mu = 200$
 - Dominant factor comes from of pile-up
 - Increasing impact for lower energies

- Diphoton invariant mass for $ggH \rightarrow \gamma\gamma$ shows that degradations to be expected for the high pile-up scenario of $\mu = 200$ w.r.t $\mu = 0$, but still similar or slightly better than Run-2!
 - Performance differences are due to improvements expected to the photon reconstruction and offline corrections
 - Reduced material in the ITk gives fewer converted photons

- No impact of pile-up on the photon direction determination observed
Phase-II B-Tagging Performance

- Identifications of jets containing a b-hadron using multivariate techniques
 - Relying on three algorithms based on the current ID
 - Track selection, likelihood parameterisations for low-level (IP3D), high-level multivariate approaches (MV1)
 - Calibration and training need to be updated to ITk especially in the forward region

- Non-optimal training for MV1 already yields good b-jet efficiency
 - At 70% efficiency a rejection of 1000 (10) is seen for the central (forward) region
 - IP3D slightly worse performance as it relies on a subset of the information available to MV1
High Granularity Timing Detector

• Timing information adds discriminatory power
 ■ Possibility to identify particles from pile-up interactions and minimises pile-up dependency
 ■ Assign each charged particle to their production vertex using the time information

• Huge improvement of the pile-up rejection efficiency with the addition of the HGTD

• Available timing information and the improved pile-up rejection benefits several areas
 ■ Reduces pile-up contamination in the primary vertex, vertex reconstruction efficiency and identification, lepton isolation efficiency, MET resolution, etc…

• Significant improvements of b-tagging performance due to rejections of tracks from pile-up interactions
Conclusions

• Significant upgrades planned to for the ATLAS detector for phase-I/-II
 ▶ Complete replacement of the Inner Detector
 ▶ Improved tracking performance and extended coverage!
 ▶ Upgrades to the Liquid Argon and Tile calorimeters readouts and electronics to provide more information to be available at L0 trigger
 ▶ New barrel trigger chambers to be installed in the Muon Spectrometer to improve trigger acceptance and to maintain current efficiency for HL-LHC

• Maintaining similar performance as the current ATLAS in very dense pile-up environments of up to $\mu \sim 200$ is a tough challenge

• Doing very well so far for physics objects reconstruction
 ▶ Expected performance for most areas is on par or better for than the current detector
 ▶ Excellent tracking and vertexing performance, high capabilities of pile-up mitigation, good energy and momentum resolutions, low fake rates, excellent b-tagging, etc...

• The future looks bright for physics!
Material Budget of the Phase-II Tracker

- Significantly reduction of the material inside the tracking volume
 - Leads to a reduction of multiple scattering of all particles
 - Reduced conversion probability of photons
- Improves the tracking efficiency and resolutions
- Particles lose less energy before the calorimeters
Pile-up Jet Suppression

- R_{p_T} defined as the scalar sum of p_T of tracks within the jet-cone and associated to the HS vertex divided by the jet p_T

 - Small values indicating few tracks associated to the HS vertex
 - High probability for being a pile-up jet

$$R_{p_T} = \frac{\sum_k p_T^{trk_k}(PV_0)}{p_T^{jet}}$$

![Graph showing R_{p_T} distribution for different $|\eta|$ ranges in ATLAS Simulation.](image)
Phase-II Jet Reconstruction

• Jet mass reconstructed for $W' \rightarrow WZ$ at $\mu = 200$

 Shown using different techniques relying on calorimeter-based m^{calo} and mass from associated tracks m^{track}

 - Track-assisted mass m^{TA} closest to the real mass of the W
 - Takes into accounts for the neutral particles contribution
 - Scales m^{track} using calorimeter information with $p_T^{\text{calo}} / p_T^{\text{track}}$
Electron and Photon Reconstruction

- Electron reconstruction efficiency is computed taking into account several sub-steps
 - The electromagnetic cluster reconstruction, the track reconstruction, the cluster-track matching, and the selection efficiency to pass the track-quality requirements
- Electron energy resolutions nearly independent of pile-up
 - Almost the same resolution sampling term and the constant term as for current ATLAS
 - Pile-up only affects and increases noise terms
 - Shows an effect on the energy resolution at low momentum
- Average combined photon signal efficiency 70% similar to current performance
 - Fake rates from HS jets $\sim 2.4 \cdot 10^{-4}$
 - And $\sim 7.0 \cdot 10^{-5}$ for pile-up jets
Photon Identification and Isolation

- Rate of which a jet from the hard scatter or a fully calibrated pile-up jet is identified as a photon and passing the isolation criteria.
Photon Direction Determination

- "Selected Vertex" using calorimeter and tracking information to determine the vertex position minimal impact compared to selecting the true vertex
- Diphoton invariant mass resolution is dominated by the photon energy resolution and the vertex resolution plays a minimal role even at $\mu = 200$