High-Energy LHC Machine

Michael Benedikt, Frank Zimmermann for the FCC collaboration

HL-LHC/HE-LHC Physics Workshop CERN, 30 October 2017

Work supported by the **European Commission** under the HORIZON 2020 projects EuroCirCol, grant agreement 654305, and ARIES, grant agreement 730871.

Future Circular Collider Study CDR for European Strategy Update 2019/20

international FCC collaboration (CERN as host lab) to design:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as a possible first step
- *p-e (FCC-he) option,* one IP,
 FCC-hh & ERL
- HE-LHC w FCC-hh technology

Future Circular Collider Study CDR for European Strategy Update 2019/20

international FCC collaboration (CERN as host lab) to design:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as a possible first step
- *p-e (FCC-he) option, one IP,* FCC-hh & ERL
- HE-LHC w FCC-hh technology

physics goals:

- 2x LHC collision energy with FCC-hh magnet technology
- c.m. energy = 27 TeV ~ 14 TeV x 16 T/8.33T
- target luminosity $\geq 4 \times HL$ -LHC (cross section $\propto 1/E^2$)

key technologies:

- FCC-hh magnets & FCC-hh vacuum system
- HL-LHC crab cavities & electron lenses

beam:

• HL-LHC/LIU parameters (25 ns baseline, 12.5 ns option)

hadron collider parameters (pp)

parameter	F	CC-hh	HE-LHC	(HL) LHC	
collision energy cms [TeV]		100	27	14	
dipole field [T]		16	16	8.3	
circumference [km]		100	27	27	
beam current [A]		0.5	1.12	(1.12) 0.58	
bunch intensity [10 ¹¹]	1 (0.5)		1 (0.5) 2.2		(2.2) 1.15
bunch spacing [ns]	25 (12.5)		25 (12.5)	25	
norm. emittance γε _{x,y} [μm]	2	2.2 (2.2)	2.5 (1.25)	(2.5) 3.75	
ΙΡ β [*] _{x,y} [m]	1.1 0.3		0.25	(0.15) 0.55	
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1	
peak #events / bunch Xing	170 1000 (500)		800 (400)	(135) 27	
stored energy / beam [GJ]	8.4		1.4	(0.7) 0.36	
SR power / beam [kW]	2400		100	(7.3) 3.6	
transv. emit. damping time [h]	1.1		3.6	25.8	
initial proton burn off time [h]	17.0	3.4	3.0	(15) 40	

"typical day" at the HE-LHC

bunch population [10¹¹] $\beta^*=25 \text{ cm}$

time [h]

hh ee he

normalized emittance [µm]

HE-LHC pile up & performance

with 160 days of physics, 70% availability, 3 h turnaround time $\beta^*=25 \text{ cm}: 820 \text{ fb}^{-1}/\text{year}$ here $\beta^*=40 \text{ cm}: 700 \text{ fb}^{-1}/\text{year}$

 \sim 15% reduction with 2x lower peak pile up

many aspects extrapolated/copied from HL-LHC or FCC-hh

exceptions:

tunnel integration and magnet technology

- push for **compact 16 T** magnets (magnetic cryostat, shielding)
- **HE-LHC** *Nb*₃*Sn* magnets must be bent 5 mm horizontal orbit shift over 14 m

arc optics

- high dipole filling factor to reach energy target \rightarrow different arc optics
- relaxed strength of quadrupoles and sextupoles \rightarrow different arc optics

straights

- low-beta insertions, longer triplet than HL-LHC, β^* reach
- collimation straights, FCC-hh scaling not applicable, warm dipole length increases w.r.t. to LHC; new approach?!
- extraction straights length of kicker & septum sections

injector

• determined by extraction system, physical & dynamic aperture, impedance...

tunnel integration

V. Mertens et al.

6 m inner tunnel diameter

main space allocation:

- 1200 mm cryo distribution line (QRL)
- 1500 mm installed cryomagnet
- 1600 cryomagnet magnet transport
- >700 mm free passage.

HE-LHC

3.8 m inner tunnel diameter

main space allocation:

- 850 mm cryo distribution line (QRL)
- 1200 mm installed cryomagnet
- 1200 cryomagnet magnet transport challenging

HE-LHC tunnel integration

requirement: no major CE tunnel modifications

- challenges for tunnel integration
- maximum magnet cryostat external diameter compatible with LHC tunnel ~1200 mm
- classical 16 T cryostat design based on LHC approach gives ~1500 mm diameter!

strategy: develop a single 16 T magnet, compatible with both HE LHC and FCChh requirements:

- options und consideration:
 - allow stray-field and/or cryostat as return-yoke
 - active compensation with (simple) shielding coils
 - optimization of inter-beam distance (compactness)
 - (QRL integrated in magnets, → reduced integral field because of longitudinal space required for service module (5%))

→ smaller diameter, also relevant for FCC-hh cost optimization

*Nb*₃*Sn* is one of the major cost & performance factors for FCC-hh/HE-LHC

main development goals until 2020:

- J_c increase (16T, 4.2K) > 1500 A/mm² i.e. 50% increase wrt HL-LHC wire
- reference wire diameter 1 mm
- potentials for large scale production and cost reduction

procurement of state-of-the-art conductor for protoyping:

- Bruker/OST– European/US
- stimulation of conductor development with regional industry:
- CERN/KEK Japanese contribution. Japanese industry (JASTEC, Furukawa, SH Copper) and laboratories (Tohoku Univ. and NIMS).
- CERN/Bochvar High-technology Research Inst. Russian contribution. Russian industry (TVEL) and laboratories
- CERN/KAT Korean industrial contribution
- CERN/Bruker- European industrial contribution

characterization of conductor & research with universities:

- > Europe: Technical Univ. Vienna, Geneva University, University of Twente
- > Applied Superconductivity Centre at Florida State University

new US DOE MDP effort – **US** activity with **industry** (OST) and labs

EU H2020 DS 'EuroCirCol' on 16 T dipole & vacuum system design

European Union Horizon 2020 program

- Support for FCC
- 3 MEURO cofunding

Scope: FCC-hh (&HE-LHC) collider

- Optics Design
- Cryo vacuum system design
- 16 T dipole design, construction folder for demonstrator magnets

EASITrain Marie Curie Training Network

European Advanced Superconductivity Innovation & Training Network
 > selected for funding by EC in May 2017, start 1 October 2017

- SC wires at low temperatures for magnets (Nb₃Sn, MgB₂, HTS)
- Superconducting thin films for RF and beam screen (Nb₃Sn, TI)
- Turbocompressor for Nelium refrigeration
- Magnet cooling architectures

FCC 16 T dipole design activities & options

FCC 16 T magnet R&D schedule

total duration of magnet program: ~20 years

would follow HL-LHC Nb₃Sn program with long models w industry from 2023/24

Fastest Possible Technical Schedules

technical schedule defined by magnets program and by CE \rightarrow earliest possible physics starting dates:

- FCC-hh: 2043
- FCC-ee: 2039
- HE-LHC: 2040 (with HL-LHC stop at LS5 / 2034)

HE-LHC design & construction

M. Benedikt

HE-LHC magnet challenge 1: field errors

original 16 T magnet (Ø=1500 mm)

compact 16 T magnet (Ø=1200 mm)

	i.		Unce	rtainty	Rar	ndom
Normal	Injection	High Field	Injection	High Field	Injection	High Field
2	0.000	0.000	0.484	0.484	0.484	0.484
3	-5.000	20.000	0.781	0.781	0.781	0.781
4	0.000	0.000	0.065	0.065	0.065	0.065
5	-1.000	-1.500	0.074	0.074	0.074	0.074
6	0.000	0.000	0.009	0.009	0.009	0.009
7	-0.500	1.300	0.016	0.016	0.016	0.016
8	0.000	0.000	0.001	0.001	0.001	0.001
9	-0.100	0.050	0.002	0.002	0.002	0.002
10	0.000	0.000	0.000	0.000	0.000	0.000
11	0.000	0.000	0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000
14	0.000	0.000	0.000	0.000	0.000	0.000
15	0.000	0.000	0.000	0.000	0.000	0.000
Skew						
2	0.000	0.000	1.108	1.108	1.108	1.108
3	0.000	0.000	0.256	0.256	0.256	0.256
4	0.000	0.000	0.252	0.252	0.252	0.252
5	0.000	0.000	0.050	0.050	0.050	0.050
6	0.000	0.000	0.040	0.040	0.040	0.040
7	0.000	0.000	0.007	0.007	0.007	0.007
8	0.000	0.000	0.007	0.007	0.007	0.007
9	0.000	0.000	0.002	0.002	0.002	0.002
10	0.000	0.000	0.001	0.001	0.001	0.001
11	0.000	0.000	0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000
14	0.000	0.000	0.000	0.000	0.000	0.000
15	0.000	0.000	0.000	0.000	0.000	0.000

	FCC Dipole field quality version 2 – 3 Oct 2017– R _m =16.7 mm. 3.3 TeV Injection								
			Systematic			Unce	ertainty	Rat	ndom
Normal	Geometric	Saturation	Persistent	Injection	High Field	Injection	High Field	Injection	High Field
2	-2.230	-44.610	0.000	-2.230	-46.840	0.922	0.922	0.922	0.922
3	-18.140	17.000	-38.560	-56.700	-1.140	3.000	1.351	3.000	1.351
4	-0.100	-0.930	0.100	0.000	-1.030	0.449	0.449	0.449	0.449
5	-0.690	-0.340	13.660	12.970	-1.030	2.000	0.541	2.000	0,541
6	0.000	-0.010	0.000	0.000	-0.010	0.176	0.176	0.176	0.176
7	1.610	0.140	-1.920	-0.310	1.750	0.250	0.211	0.250	0.211
8	0.000	0.000	0.000	0.000	0.000	0.071	0.071	A	0.071
9	1.310	0.120	3.970	5.280	1.430	1.000	0.092	1.000	0.092
10	0.000	0.000	0.000	0.000	0.000	0.027	- 00X	0.027	0.027
11	0.960	0.090	-0.100	0.860	1.050	0.200	0.028	0.200	0.028
12	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.009	0.009
13	-0.170	-0.020	0.170	0.000	-0.190	0.011	0.000	0.011	0.011
14	0.000	0.000	0.000	0.000		0.003	0.000	0.003	0.003
15	0.010	0.000	-0.010	0.000	0.010	9,104	0.000	0.004	0.004
Skew				<u> </u>	<u> </u>	יכ			
2	0.000	0.000	0.000	0.000	00	1.040	1.040	1.040	1.040
3	0.000	0.000	(0)0	0.000	0.000	0.678	0.678	0.678	0.678
4	0.000	0.000	00.000		0.000	0.450	0.450	0.450	0.450
5	0.000	XN'	0.000	2 .000	0.000	0.317	0.317	0.317	0.317
6	0.000	9.000	0.000	0.000	0.000	0.205	0.205	0.205	0.205
7	0.000	0.000	0.000	0.000	0.000	0.116	0.116	0.116	0.116
8	0.000	0.000	0.000	0.000	0.000	0.071	0.071	0.071	0.071
	0.000	0.000	0.000	0.000	0.000	0.041	0.041	0.041	0.041
10	0.000	0.000	0.000	0.000	0.000	0.025	0.025	0.025	0.025
11	0.000	0.000	0.000	0.000	0.000	0.016	0.016	0.016	0.016
12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.009
13	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.005
14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.003
meeti h§	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	80.002

HE-LHC magnet challenge 2: stray field

"n1" beam stay clear

16-Tesla magnet bore: 50 mm (LHC: 56 mm)

arc beam-screen options for HE

"n1" concept for beam stay clear

L_x=15 mm, t_x=(2+1) mm, f_{arc}=0.14, δ_p =8.6*10⁻⁴, ε_x=2.5 μm, k_β=1.05

$$n1_x = \frac{L_x - t_x - (1 + f_{\rm arc})D_x\delta_p}{k_\beta\sigma_x}$$

 $\sigma_x = \sqrt{\beta_x \epsilon_x}$

B. Jeanneret

assume HL-LHC tolerances for optics orbit, and alignment

Parameter set

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN — ACCELERATORS AND TECHNOLOGY SECTOR

CERN-ACC-2016-032

Table 1: The new proposed parameters to be used in the n_1 model for HL-LHC studies at injection (in bold) together with the parameter set that was used during the LHC design phase.

 Parameters for aperture calculations at injection for HL-LHC*
 Primary halo extension Secondary halo, hor./

 R. Brwei, C. Braces, R. De Maria, M. Giovannozzi, S. Rednelli, R. Tomás, F. Voluti, J. Wenninger
 Secondary halo, radia Normalized emittance Radial closed orbit excursion x_{co}

 Abure to the more the major could be apernee. In the result of the major could be apernee in the result of the major could be apernee in the result of the major could be apernee and to the fee integrate of the major could be apernee integration of the major could be apernee and to the fee integrate of the major could be apernee integrate of the major could be apernee and to the fee integrate of the major could be apernee integrate of the major could be apernee integrate of the major could be apernee integrate of the major could be approxed of the fee integrate of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of the fee integrates of the major could be approxed of

> Genevu, Switzerland 5 February 2016

I dituineter bet	Bire design	in bire acoign
Primary halo extension	6σ	6 σ
Secondary halo, hor./ver.	7.3 σ	6 σ
Secondary halo, radial	8.3 σ	6 σ
Normalized emittance ϵ_n	3.75 µm	2.5 μm
Radial closed orbit		
excursion x_{co}	4 mm	2 mm^1
Momentum offset δ_p	$1.5 imes 10^{-3}$	$8.6 imes10^{-4}$
β -beating fractional		
beam size change k_{β}	1.1	1.05
Relative parasitic		
dispersion $f_{\rm arc}$	0.27	0.14
Mechanical alignment	~2 mm	1 mm?

LHC design HL-LHC design

M. Giovannozzi, D. Zhou, F. Zimmermann

1st HE-LHC optics release V0.1

main features:

- 18 cells / arc (cf LHC: 23)
- 90 degree phase advance / arc cell as in LHC
- 8 dipoles per cell (LHC: 6)
- ring separation: 204 mm (LHC: 194 mm)
- IR1 and IR5 optimized with longer triplet and shielding
- IR4 optimized with more RF and limited dipole strength
- global matching and chromaticity correction

D. Zhou, KEK Y. Nosochkov, SLAC T. Risselada, CERN (ret.) M. Hofer, TU Vienna, L. van Riesen-Haupt, J. Abelleira, Oxford JAI, M. Crouch (CERN)

HE-LHC experimental IR

triplet lengths: HE-LHC: 56 m (13.5 TeV) HL-LHC: 41.8m *10**(3)] present LHC: 30.4 m ca. 11 m space for crab cavities injection optics with $\beta^*=11 \text{ m}$

(n1 >12 σ)

L. van Riesen-Haupt, J. Abelleira, Oxford JAI

final triplet shielding & aperture

- triplet quadrupoles with 2 cm inside W shielding
- $\beta^* = 25 \text{ cm}$
- > 12.5 σ stay clear with crossing angle
- for 10 ab⁻¹ total luminosity: 30 50 MGy peak radiation (peak at Q3 can be reduced with shield in frnot)

L. van Riesen-Haupt, J. Abelleira, Oxford JAI

- must fit into existing straights (0.5 km)
- \rightarrow scaling solution used for FCC-hh (0.5 \rightarrow 2.8 km) not applicable
- → reduced collimator gaps and(/or) hollow e-lenses (under study for HL-LHC)
- dogleg separation with NC magnets gets longer
 → shielded SC dipoles and/or quadrupoles

HE-LHC collimator settings

tig	hter gaps than LHC/HL-LHC	scaling from HL-LHC		
	↓	•	•	
	450 GeV	900 GeV	1.3 TeV	
reference emittance	2.5 um	2.5 um	2.5 um	
primary colls	5 σ	5.7 σ	5.7 σ	
secondary colls	6 σ	6.7 σ	6.7 σ	
TCDQA	7.3 σ	8.3 σ	8.3 σ	
machine aperture	~8σ	> 10.6 o	> 10.6 o	
Comments	very tight, not compatible with aperture			
TH428130 TH413810 TH413810	Physical gaps scale as $\sqrt{\frac{\varepsilon_n}{E}}$ For HL-LHC, $\varepsilon_n = 3.5 \mu m$ For HE-LHC, $\varepsilon_n = 2.5 \mu m$ S00GeV 900GeV 450GeV	Red: 1300GeV Green: 900GeV Purple: 450GeV	D. Amorim, S. Antipov, S. Arsenyev, R. Bruce, M. Crouch, S. Redaelli,	
Number of σ	0	4 8 12 Halfgap (mm)	F. Zimmermann	

collimation loss maps

B. Goddard

doubling length of extraction kicker & septa challenging (space constraints)

preferred: new kicker with reduced vertical opening & increased rise time scaling kicker opening to $\sqrt{(450/1000)}$: 62 \rightarrow 42 mm

▶ kicker magnetic gap $72 \rightarrow 52$ mm (vacuum chamber)

NATION			LHC Nominal	HE Nominal
A A A A A A A A A A A A A A A A A A A	MKD V gap	mm	72	52
	MKD rise time	us	3.00	4.30
	MKD angle	mrad	0.27	0.27
	MKD B.dl	Tm	6.3	12.6
	MKD field	Т	0.30	0.60
	MKD peak field	Т	0.41	0.80
	MKD dl/dT	kA/us	6.17	6.21
	MKD I	kA	18.5	26.7
	MKD length	m	21.0	21.2
	MKD Filling factor		0.761	0.761
	MKD Required length	m	27.6	27.8
	MKD magnets		15.0	15.1

▶ 15 magnets, 0.8 T and 26.7 kA: gives 4.3 µs rise time

beam extraction system for 13.5 TeV beam in existing LHC straight \rightarrow preference for injection energy > 1 TeV

scSPS as HE-LHC injector

- keep SPS geometry (6 LSS)
- replace SPS by new superconducting single aperture machine
- peak magnetic field 6 T → extract at 1.3 TeV fast ramping
- scSPS energy swing ~50

scSPS helps for HE-LHC optics, physical & dynamic aperture, impedance effects & extraction,

• scSPS design as injector option for FCC-hh

Parameter	Unit	Value
Injection energy	GeV	26
Extraction energy	GeV	1300
Maximum dipole field	Т	6
Dipole field at injection	Т	0.12
Number of dipoles		372
Number of quadrupoles		216
Ramp rate	T/s	0.35 - 0.5
Cycle length	min	1
Number of bunches per cycle		640
Number of injections into scSPS		8 (80b)
Number of protons per bunches		$\leq 2.5 \times 10^{11}$
Number of extraction per cycle		2 (2x320 b)
Number of cycles per FCC filling		34
FCC filling time	min	34 - 40
Max stored beam energy	MJ	33

F. Burkart

$scSPS \rightarrow HE-LHC: new transfer lines$

scSPS6 → HE-LHC2:

nc (2T): 2187 m straight: 446 m nc (2T): 72 m sc (6T): 136 m

filling factor: 70%, slopes for sc below 3%.

<u>scSPS4 \rightarrow HE-LHC8:</u>

hh ee he

F. Burkart

sc(6T): 1300 m nc (2T): 166 m straight: 280 m nc(2T): 76 m sc(6T): 468 m

HE-LHeC ep collisions

parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
$E_p [\text{TeV}]$	7	7	12.5	50
$E_e [\text{GeV}]$	60	60	60	60
$\sqrt{s} [\text{TeV}]$	1.3	1.3	1.7	3.5
bunch spacing [ns]	25	25	25	25
protons per bunch $[10^{11}]$	1.7	2.2	2.5	1
$\gamma \epsilon_p \; [\mu \mathrm{m}]$	3.7	2	2.5	2.2
electrons per bunch $[10^9]$	1	2.3	3.0	3.0
electron current [mA]	6.4	15	20	20
IP beta function β_p^* [cm]	10	7	10	15
hourglass factor H_{geom}	0.9	0.9	0.9	0.9
pinch factor H_{b-b}	1.3	1.3	1.3	1.3
proton filling H_{coll}	0.8	0.8	0.8	0.8
luminosity $[10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1	8	12	15

Oliver Brüning¹, John Jowett¹, Max Klein^{1,2},

Dario Pellegrini¹, Daniel Schulte¹, Frank Zimmermann¹

¹ CERN, ² University of Liverpool

April 6th, 2017

HE-LHC summary

HE-LHC physics parameters

- 27 TeV c.m. energy in pp collisions
- >10 ab⁻¹ over 20 years
- pile up of up to ~800 at 25 ns spacing (~400 w 12.5 ns or w leveling)
- excellent prospects for lepton-hadron & heavy-ion collisions
- earliest technically possible start of physics: 2040
 - this would require HL-LHC stop at LS5
- **HE-LHC main challenges**
 - bent, compact 16 T Nb₃Sn dipole magnets
 - more constrained & more difficult than FCC-hh magnets
 collimation and extraction in given length of straight section
 new superconducting SPS as 1.3 TeV injector, new transfer lines
 synchrotron radiation and Nb₃Sn AC losses during current ramp

FCC/HE-LHC Advisory Committee

- IAC composition covering all study areas, 17 members
- important role as expert review committee for study and CDR preparation

	FCC Interna	FCC International Advisory Committee						
Chair	Dissertori	Guenther	ETHZ	СН				
	Diemoz	Marcella	INFN	IT				
	Egorychev	Victor	ITEP	RU				
Figure	Herten	Gregor	U. Freiburg	GE				
Experiments	Quigg	Chris	FNAL	US				
	Parker	Andrew	U. Cambridge	UK				
	Assmann	Ralph	DESY	GE				
Accelerator	Biscari	Caterina	ALBA-CELLS	ES				
Design	Fischer	Wolfram	BNL	US				
	Shiltsev	Vladimir	FNAL	US				
	Lebrun	Philippe JUAS						
	Minervini	Joe	MIT	US				
Technology	Mosnier	Alban	CEA	FR				
and	Ross	Marc	SLAC	US				
Infrastructure	Seidel	Mike	PSI	CH				
	Watson	Tim	ITER	ITER				

Conceptual Design Report

- required for end 2018, as input for European Strategy Update
- common physics summary volume
- three detailed volumes FCC-hh, FCC-ee, HE-LHC
- three summary volumes FCC-hh, FCC-ee, HE-LHC

FCC Collaboration - Status July 2017

> 500 participants
147 institutes
a lot of young people
(>35% younger than 35)

FCCWEEK2017 Future Circular Collider Conference BERLIN, GERMANY 29 MAY - 02 JUNE fccw2017.web.cern.ch

spare slides

High-Energy LHC

FCC study continues effort on high-field collider in LHC tunnel 2010 EuCARD Workshop Malta; Yellow Report CERN-2011-1

EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider - HE-LHC10, E. Todesco and F. Zimmermann (eds.), EuCARD-CON-2011-001; arXiv:1111.7188; CERN-2011-003 (2011)

- based on 16-T dipoles developed for FCC-hh
- extrapolation of other parts from the present (HL-)LHC and from FCC developments

options for HE-LHC arc optics

	LHC-like	18x60 ⁰	18x80º.	18x90º	20x90º
Arc cell phase advance [deg]	90/90	60/60	ells:	90,90-T	90/90
Arc cell length [m]	106.958	21	C 137.233	W NP	124.8
K1 [m ⁻¹]	0.027	ber	.Pd13/110	+1POIC	0.023
β _{max/min} [m]	181.3/31.	0236.7/79.5	027.7/5030	233.0/40.4	211.7/36.8
η _{max/min} [m]	2.2/1.1	p. cell	c 3022	3.6/1.8	3.0/1.5
Dipole length [m]	14.3 [x6]	eg , nole	14.18 [x8]		12.625 [x8]
Dipole field [T] @13.5TeV	600	adrup	15.59		15.92
Quad. gradient [T/m] @13.5TeV	391.7 C	214.8	276.2	303.9	334.7
Sext. gradient [T/m ²] @13.5TeV	4883	866	1824	?	2940
Filling factor	0.802		0.827		0.809

D. Zhou, KEK; Y. Nosochkov, SLAC; T. Risselada, E. Todesco, CERN