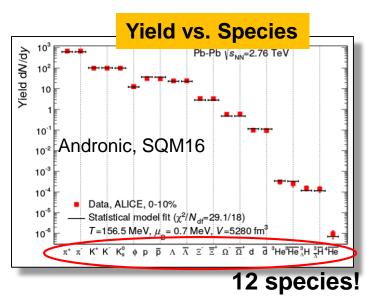
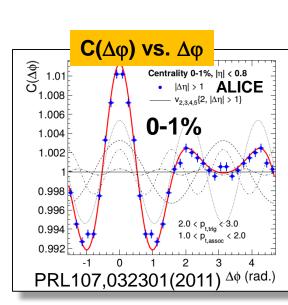
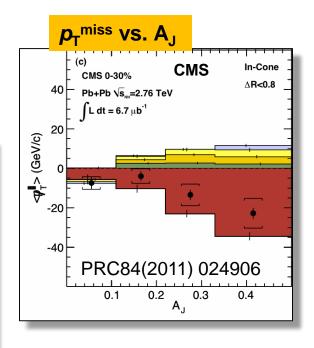
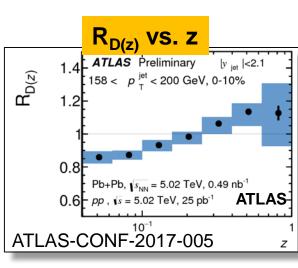


Heavy-Ion Prospects for HL-LHC

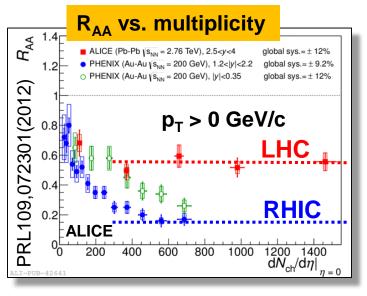

Jan Fiete Grosse-Oetringhaus, CERN (on behalf of ALICE, ATLAS, CMS, LHCb)

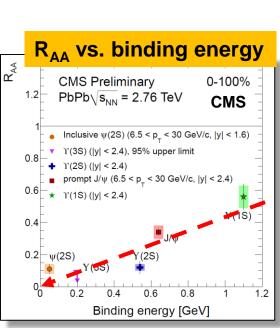

Workshop on the physics of HL-LHC, and perspectives at HE-LHC 30.10.17

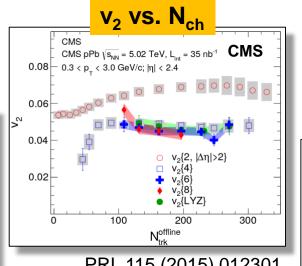



Heavy-Ion Physics at the Energy Frontier

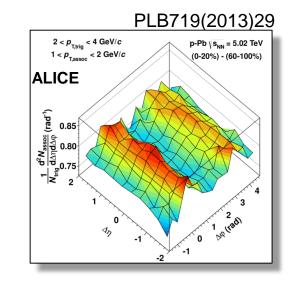
- LHC is precision machine for heavy-ion physics
 - Has set standard for measurements of particle production, collective flow and energy loss

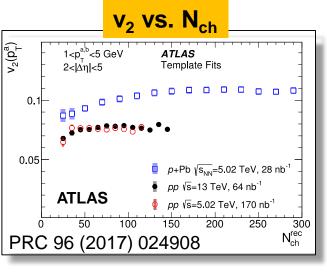






Heavy-Ion Physics at the Energy Frontier


- LHC is a discovery machine for heavy-ion physics
 - Quarkonia melting and J/ψ regeneration
 - Collective-like effects in small systems

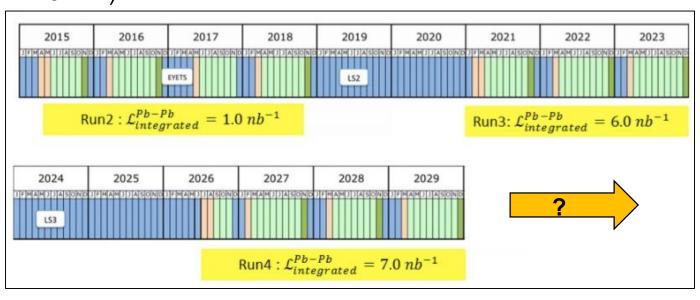


PRL 115 (2015) 012301

Open Questions

- Underlying dynamics
 - Macroscopic QGP transport properties measured with accuracy
 - What is the underlying dynamics? I.e. the model describing long wavelength (ideal fluid) and short wave-length ("quenching") behavior
 - What are the (relevant) degrees of freedom / microscopic structure?
 - How to derive behavior from QCD?
- QGP onset (as a function of system size)
 - Traditionally, onset of QGP physics expected (leading to postulation of smoking gun observables). Reality more complex...
 - Smooth onset to first order in many observables, with some fine structure to second order
 - Huge potential to learn about underlying dynamics, i.e. non-perturbative QCD

Heavy Ions at the LHC

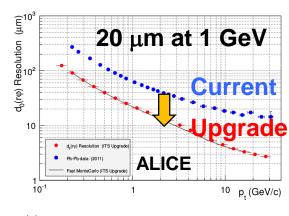

• Run 2:

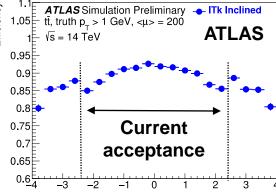
– Pb-Pb: few nb⁻¹ (0.7 nb⁻¹ in 2015, ~1 nb⁻¹ in 2018) at $\sqrt{s_{NN}}$ = 5 TeV

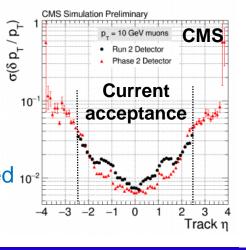
 $\sigma_{hadr,PbPb} = 8 barn !$

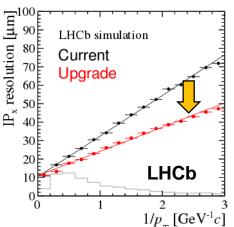
- p-Pb at 5 and 8 TeV (185 nb⁻¹ in 2016)
- pp reference at Pb-Pb energy (5 TeV, Nov 2017)
- LS2:
 - LHC injector upgrades; bunch spacing reduced to 50 ns
 - Pb-Pb interaction rate up to 50 kHz (now <10 kHz)
 - Experiments' upgrades (also LS3)
- Runs 3+4:
 - Request for Pb-Pb: >10 nb⁻¹
 (ALICE: 10 nb⁻¹ at 0.5T + 3 nb⁻¹ at 0.2T)
 - In line with projections by machine:
 3.1 nb⁻¹/month (Chamonix 2017)

HL-LHC for heavy ions begins in Run 3!






Detector Upgrades


most relevant to heavy-ion physics

- ALICE (LS2)
 - New inner tracker: precision and efficiency at low p_T
 - New pixel forward muon tracker: precise tracking and vertexing for μ
 - TPC upgrade + readout + online data reduction x100 faster readout (continuous)
- **ATLAS** (LS2/LS3)
 - Fast tracking trigger (LS2): high-multiplicity tracking
 - Calorimeter and muon upgrades (LS2): electron, γ, muon triggers
 - ZDC replacement planned (LS2): radiation hardness, granularity
 - Completely new tracker (LS3): tracking and b-tag up to η =4
- CMS (mainly LS3)
 - Extension of forward muon system (LS2): muon acceptance
 - Completely new tracker (LS3): tracking and b-tag up to η =4
 - Upgrade forward calorimeter (LS3): forward jets in HI
- **LHCb** (LS2)
 - Triggerless readout, full software trigger, higher granularity detectors: impact on tracking performance in Pb-Pb being studied 10⁻²
 - Fixed-target programme with SMOG + possible extensions

Trigger/Readout Strategies

ALICE

- Main focus on "untriggerable" signals (extremely low S/B)
- Trigger approach: write all events at 50 kHz in Pb-Pb e.g. ALICE: ~1.1 TB/s
 O² facility
 ~90 GB/s (50 kHz)
- Increase of minimum-bias sample x100 wrt Run-2

LHCb

Similar strategy than ALICE, but rates to be defined

ATLAS/CMS

- Main focus on muon, jet, displaced track triggers
- Trigger approach: strong event number reduction e.g. CMS: 50 kHz
 L1 ~10 kHz
 HLT ~3 kHz
- Increase of minimum-bias (rare-trigger) sample x5 (x10) wrt Run-2

Heavy-Ion Physics in Run 3 and 4

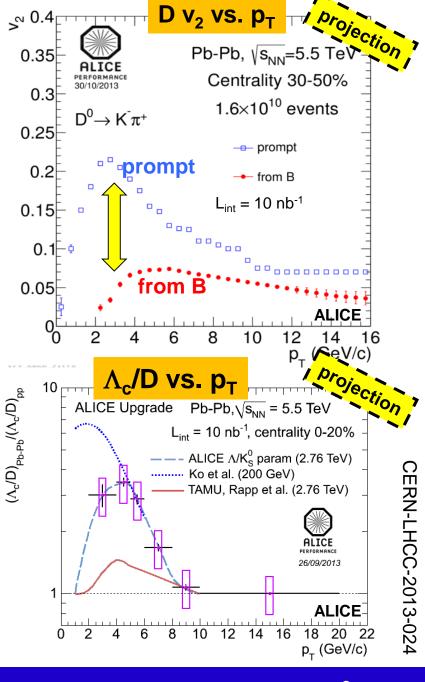
Precision Physics

Novel Directions

- Energy loss / qhat
 - Jets, b,γ,Z-jets, di-jets, colour/mass dep.
- Probe chiral symmetry restoration at $\mu_B = 0$
- QGP deconfinement and temperature
 - Quarkonia dissociation and regeneration
- Charm interaction with QGP
- Temperature dep. of transport coefficients
- Behaviour across system size
- High Q² and high-x nPDFs
- Ultraperipheral collisions
- Production of nuclei

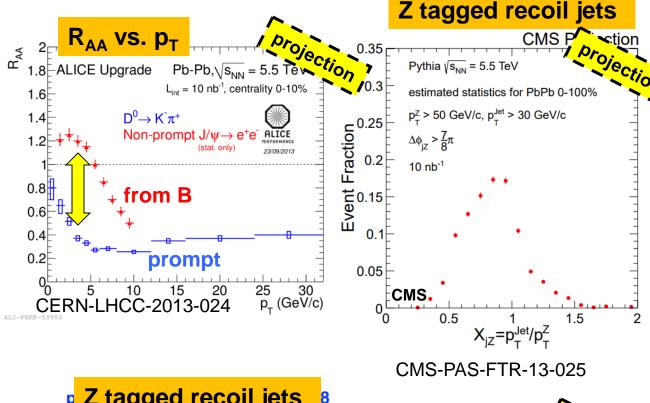
- Jet substructure
 - probe medium degree of freedom
- QGP temperature evolution

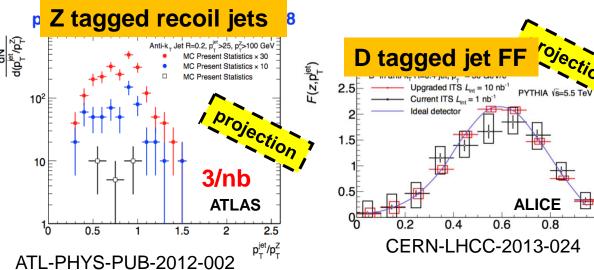
- Beauty thermalization
- Critical fluctuations, link to lattice QCD
- Collective behaviour of few particle systems
- Saturation at small x
- Light by light scattering
- Antihypernuclei and dibaryon


Existing ALICE <u>Upgrade LOI | MFT | ITS | MTK</u> documents: ATLAS <u>projections | ITk</u>

CMS <u>HI HL-LHC projections</u> <u>HI Town Meeting | Input to ESPG</u>

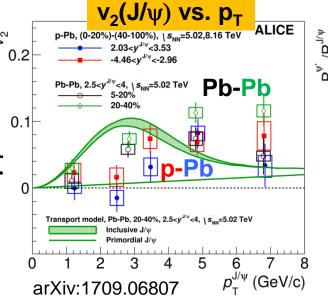
Heavy Flavour

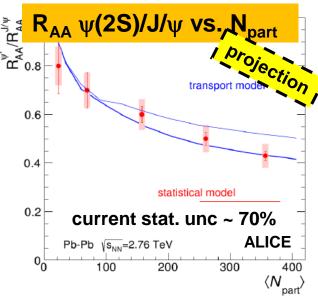

- Study QGP with tagged probe produced only initially which preserves identity during medium lifetime
- Do heavy quarks thermalize?
 - Charm and beauty v_2 down to $p_T = 0$
- How does charm recombine from the QGP?
 - D_s/D, Λ_c /D, Λ_b /B ratio
- Charm cross-section to $p_T = 0$
 - Reduce regeneration model uncertainties
- Beauty transport compared to lattice QCD

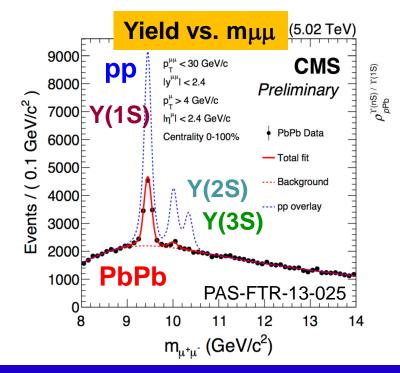


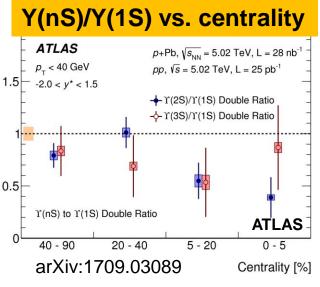
Jets / Energy Loss

- Flavour dependence of energy loss
 - Charm and beauty R_{AA}
- Precise measurement of photon-jet and Z-jet asymmetry
- Suppression at TeV scale
- Flavour dependence of fragmentation function
- Jet substructure observables
 - Medium-modified splitting
 - Colour coherence
 - Probe QGP degrees of freedom (quasiparticles vs. fields)

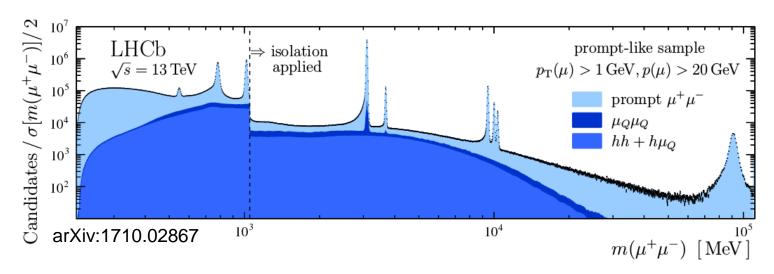


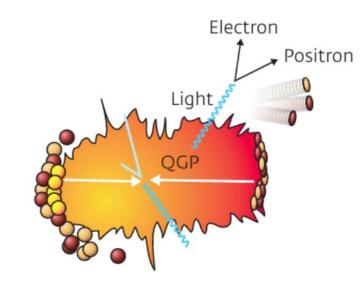


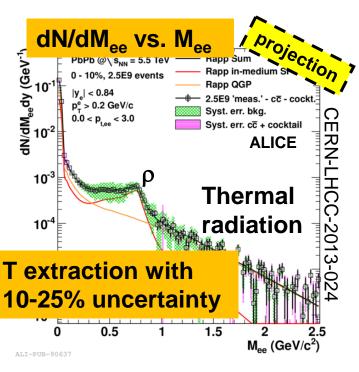

Quarkonia


- J/ψ flow precision measurement
- Compare states with different binding energy
 - Melting and regeneration
 - Formation models
- Bottomonia flow in reach

Y(1S)	Y(2S)	Y(3S)	
270k	40k	7k	
(in CMS in 10nb ⁻¹)			

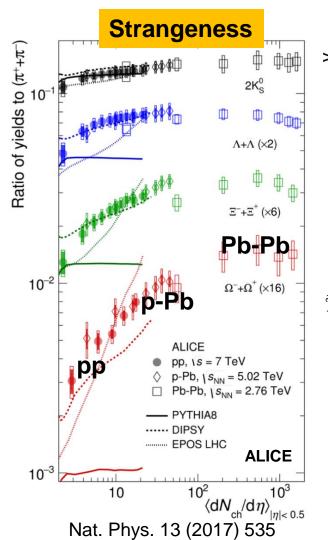


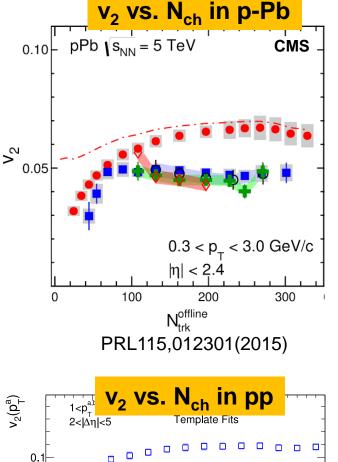


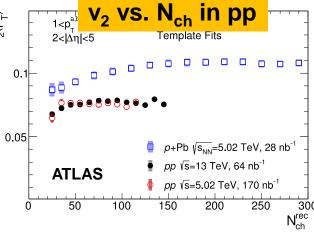

(Low-mass) Dileptons

- Time dependence of QGP temperature
 - Black body radiation from QGP
- Change of ρ spectral function when chiral symmetry is restored

LHCb potential to be explored (pp, p-Pb, Pb-Pb)

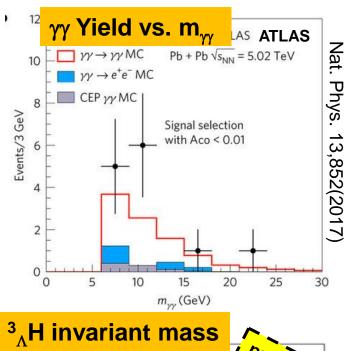


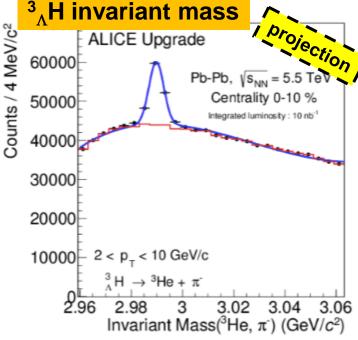




Small Systems

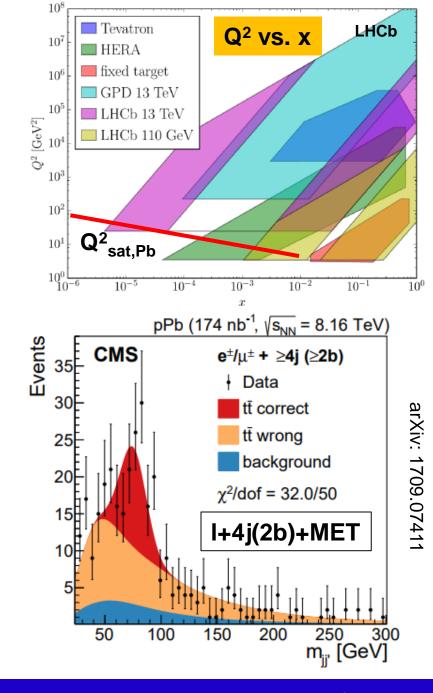
- pp and p-Pb collisions initially only discussed as reference
- Today: novel field, studying nonperturbative "heavy-ion" like effects in absence of large medium
- HL: search for collective effects in HF, thermal radiation, quenching
- What is smallest droplet of matter showing collective behavior?
- Origin of collectivity in few particle system? (color reconnection, gluon interference, escape, ...)





Further Directions

- Ultraperipheral collisions
 - Light-by-light scattering
 - Photo-nuclear collisions → nPDFs
- Light nuclear states
 - Dynamical coalescence vs. statistical thermal production
 - Discovery of (anti-)(hyper-)nuclei and (strange) dibaryons
 - Precision of ³ H lifetime and spectrum
- Lighter ions
 - Increase of hard yields and system-size dependence
 - Potential in overall programme and optimal species to be established



p-Pb and Fixed Target

- Nuclear PDFs
- Saturation
- Forward access to $x = 10^{-6}$
- Fixed target with SMOG system in LHCb
- Top
 - Recent "discovery" in p-Pb
 - Probe large Q² large x region
 - HL: 10xstats allows rapidity dep. measurement
 - and "discovery" in Pb-Pb (500-900 ttbar rec. expected)

Parallel Session Structure

WG5 aims

- Sharpen and document physics program for Run 3 and 4
- Explore future directions beyond Run 4 and for HE-LHC

Session 1	Tuesday 11:00 – 13:00	4-3-006	Guided discussion: Heavy flavour and Quarkonia Talk: Radiation/low-mass dileptons
Session 2	Tuesday 14:00 – 16:00	160-1-009	Guided discussion: Jets/energy loss Guided discussion: Flow/correlations
Session 3	Tuesday 16:30 – 18:30	160-1-009	Guided discussion: Flow/correlations (cont.) Guided discussion: Small systems
Session 4	Wednesday 9:00 - 10:30	40-S2-A01	Talk: Cosmic ray physics Guided discussion: nPDFs/small-x/UPC
Session 5	Wednesday 11:00 - 13:00	40-S2-A01	Talk: Identified spectra and nuclei Open question session: LHC and beyond

Summary

 Heavy-ion physics addresses fundamental aspects of QCD in particular in the non-perturbative regime

- Heavy ions are and will be an integral part of the LHC program
 - with precision physics and discoveries
- ALICE, ATLAS, CMS and LHCb promise rich physics results

We wish you a productive workshop!