Heavy-Ion Prospects for HL-LHC

Jan Fiete Grosse-Oetringhaus, CERN
(on behalf of ALICE, ATLAS, CMS, LHCb)

Workshop on the physics of HL-LHC, and perspectives at HE-LHC

30.10.17
Heavy-Ion Physics at the Energy Frontier

- LHC is precision machine for heavy-ion physics
 - Has set standard for measurements of particle production, collective flow and energy loss

Yield vs. Species

- 12 species!

C(Δφ) vs. Δφ

- 0-1%

$p_{T\text{miss}}$ vs. A_J

- CMS

$R_D(z)$ vs. z

- ATLAS Preliminary

Heavy-Ion Prospects for HL-LHC - Jan Fiete Grosse-Oetringhaus
Heavy-Ion Physics at the Energy Frontier

- LHC is a discovery machine for heavy-ion physics
 - Quarkonia melting and J/ψ regeneration
 - Collective-like effects in small systems
Open Questions

• Underlying dynamics
 – Macroscopic QGP transport properties measured with accuracy
 – What is the underlying dynamics? I.e. the model describing long wavelength (ideal fluid) and short wave-length ("quenching") behavior
 – What are the (relevant) degrees of freedom / microscopic structure?
 – How to derive behavior from QCD?

• QGP onset (as a function of system size)
 – Traditionally, onset of QGP physics expected (leading to postulation of smoking gun observables). Reality more complex…
 – Smooth onset to first order in many observables, with some fine structure to second order
 – Huge potential to learn about underlying dynamics, i.e. non-perturbative QCD
Heavy Ions at the LHC

• Run 2:
 – Pb-Pb: few nb$^{-1}$ (0.7 nb$^{-1}$ in 2015, ~1 nb$^{-1}$ in 2018) at $\sqrt{s_{NN}} = 5$ TeV
 – p-Pb at 5 and 8 TeV (185 nb$^{-1}$ in 2016)
 – pp reference at Pb-Pb energy (5 TeV, Nov 2017)

• LS2:
 – LHC injector upgrades; bunch spacing reduced to 50 ns
 – Pb-Pb interaction rate up to 50 kHz (now <10 kHz)
 – Experiments’ upgrades (also LS3)

• Runs 3+4:
 – Request for Pb-Pb: >10 nb$^{-1}$
 (ALICE: 10 nb$^{-1}$ at 0.5T + 3 nb$^{-1}$ at 0.2T)
 – In line with projections by machine:
 3.1 nb$^{-1}$/month (Chamonix 2017)

\[\sigma_{\text{hadr,PbPb}} = 8 \text{ barn} ! \]

HL-LHC for heavy ions begins in Run 3 !
Detector Upgrades
most relevant to heavy-ion physics

• **ALICE (LS2)**
 – New inner tracker: precision and efficiency at low p_T
 – New pixel forward muon tracker: precise tracking and vertexing for μ
 – TPC upgrade + readout + online data reduction $\times 100$ faster readout (continuous)

• **ATLAS (LS2/LS3)**
 – Fast tracking trigger (LS2): high-multiplicity tracking
 – Calorimeter and muon upgrades (LS2): electron, γ, muon triggers
 – ZDC replacement planned (LS2): radiation hardness, granularity
 – Completely new tracker (LS3): tracking and b-tag up to $\eta=4$

• **CMS (mainly LS3)**
 – Extension of forward muon system (LS2): muon acceptance
 – Completely new tracker (LS3): tracking and b-tag up to $\eta=4$
 – Upgrade forward calorimeter (LS3): forward jets in HI

• **LHCb (LS2)**
 – Triggerless readout, full software trigger, higher granularity detectors: impact on tracking performance in Pb-Pb being studied
 – Fixed-target programme with SMOG + possible extensions
Trigger/Readout Strategies

ALICE
• Main focus on “untriggerable” signals (extremely low S/B)
• Trigger approach: write all events at 50 kHz in Pb-Pb
e.g. ALICE: \(\approx 1.1 \text{ TB/s} \quad \text{O}2 \text{ facility} \quad \approx 90 \text{ GB/s} \) (50 kHz)
• Increase of minimum-bias sample \(x100\) wrt Run-2

LHCb
• Similar strategy than ALICE, but rates to be defined

ATLAS/CMS
• Main focus on muon, jet, displaced track triggers
• Trigger approach: strong event number reduction
e.g. CMS: 50 kHz \(\rightarrow\) \(\approx 10 \text{ kHz} \quad \text{L1} \rightarrow \text{HLT} \rightarrow \approx 3 \text{ kHz}\)
• Increase of minimum-bias (rare-trigger) sample \(x5 \) (\(x10\)) wrt Run-2
Heavy-Ion Physics in Run 3 and 4

Precision Physics

• Energy loss / q_{hat}
 – Jets, b,γ,Z-jets, di-jets, colour/mass dep.
• Probe chiral symmetry restoration at $\mu_B = 0$
• QGP deconfinement and temperature
 – Quarkonia dissociation and regeneration
• Charm interaction with QGP
• Temperature dep. of transport coefficients
• Behaviour across system size
• High Q^2 and high-x nPDFs
• Ultraperipheral collisions
• Production of nuclei

Novel Directions

• Jet substructure
 – probe medium degree of freedom
• QGP temperature evolution
• Beauty thermalization
• Critical fluctuations, link to lattice QCD
• Collective behaviour of few particle systems
• Saturation at small x
• Light by light scattering
• Antihypernuclei and dibaryon

Existing documents: ALICE Upgrade LOI | MFT | ITS | MTK
ATLAS projections | ITk

CMS HI HL-LHC projections
HI Town Meeting | Input to ESPG
Heavy Flavour

- Study QGP with tagged probe produced only initially which preserves identity during medium lifetime
- Do heavy quarks thermalize?
 - Charm and beauty v_2 down to $p_T = 0$
- How does charm recombine from the QGP?
 - D_s/D, Λ_c/D, Λ_b/B ratio
- Charm cross-section to $p_T = 0$
 - Reduce regeneration model uncertainties
- Beauty transport compared to lattice QCD
Flavour dependence of energy loss
- Charm and beauty R_{AA}

Precise measurement of photon-jet and Z-jet asymmetry

Suppression at TeV scale

Flavour dependence of fragmentation function

Jet substructure observables
- Medium-modified splitting
- Colour coherence
- Probe QGP degrees of freedom (quasiparticles vs. fields)
Quarkonia

- J/ψ flow precision measurement
- Compare states with different binding energy
 - Melting and regeneration
 - Formation models
- Bottomonia flow in reach

<table>
<thead>
<tr>
<th>Y(1S)</th>
<th>Y(2S)</th>
<th>Y(3S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>270k</td>
<td>40k</td>
<td>7k</td>
</tr>
</tbody>
</table>

(in CMS in 10nb⁻¹)
(Low-mass) Dileptons

- Time dependence of QGP temperature
 - Black body radiation from QGP
- Change of ρ spectral function when chiral symmetry is restored
- LHCb potential to be explored (pp, p-Pb, Pb-Pb)
Small Systems

- pp and p-Pb collisions initially only discussed as reference
- Today: novel field, studying non-perturbative “heavy-ion” like effects in absence of large medium
- HL: search for collective effects in HF, thermal radiation, quenching
- What is smallest droplet of matter showing collective behavior?
- Origin of collectivity in few particle system? (color reconnection, gluon interference, escape, …)
Further Directions

• Ultraperipheral collisions
 – Light-by-light scattering
 – Photo-nuclear collisions \rightarrow nPDFs

• Light nuclear states
 – Dynamical coalescence vs. statistical thermal production
 – Discovery of (anti-)(hyper-)nuclei and (strange) dibaryons
 – Precision of $^3\Lambda$H lifetime and spectrum

• Lighter ions
 – Increase of hard yields and system-size dependence
 – Potential in overall programme and optimal species to be established
p-Pb and Fixed Target

- Nuclear PDFs
- Saturation
- Forward access to $x = 10^{-6}$
- Fixed target with SMOG system in LHCb
- Top
 - Recent “discovery” in p-Pb
 - Probe large Q^2 – large x region
 - HL: 10xstats allows rapidity dep. measurement
 - and “discovery” in Pb-Pb
 (500-900 ttbar rec. expected)

Heavy-Ion Prospects for HL-LHC - Jan Fiete Grosse-Oetringhaus
Parallel Session Structure

• WG5 aims
 – Sharpen and document physics program for Run 3 and 4
 – Explore future directions beyond Run 4 and for HE-LHC

| Session 1 | Tuesday 11:00 – 13:00 | 4-3-006 | Guided discussion: Heavy flavour and Quarkonia
| | | | Talk: Radiation/low-mass dileptons |
| Session 2 | Tuesday 14:00 – 16:00 | 160-1-009 | Guided discussion: Jets/energy loss
| | | | Guided discussion: Flow/correlations |
| Session 3 | Tuesday 16:30 – 18:30 | 160-1-009 | Guided discussion: Flow/correlations (cont.)
| | | | Guided discussion: Small systems |
| Session 4 | Wednesday 9:00 – 10:30 | 40-S2-A01 | Talk: Cosmic ray physics
| | | | Guided discussion: nPDFs/small-x/UPC |
| Session 5 | Wednesday 11:00 – 13:00 | 40-S2-A01 | Talk: Identified spectra and nuclei
| | | | Open question session: LHC and beyond |
Summary

- Heavy-ion physics addresses fundamental aspects of QCD in particular in the non-perturbative regime

- Heavy ions are and will be an integral part of the LHC program
 – with precision physics and discoveries

- ALICE, ATLAS, CMS and LHCb promise rich physics results

We wish you a productive workshop!