

u^{\flat}

^b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Searches for SUSY signals at ATLAS

November 1st 2017 **Federico Meloni** on behalf of the ATLAS Collaboration

Introduction

At the LHC turn-on, many hoped that SUSY would be just around the corner.

• However, we are still looking for it.

SUSY is not a model but a large theoretical framework.

- L.Davis/The New York Time
- ATLAS is investigating the reach of the HL-LHC to determine how far can "the corner" be

SUSY prospects strategy

Simple analysis approaches mimicking the Run 1&2 selections

- Parameterised detector response (derived from full simulation)
- Typically consider different pile-up regimes and detector layouts
- Sensitivity evaluated with a significance-like variable, referred to as Z_n

$$Z_n = \sqrt{2} \operatorname{erf}^{-1} (1 - 2p) \qquad p \propto \int_0^\infty db \, G(b; N_b, \delta b) \sum_{i=N_{data}}^\infty \frac{e^{-b} b^i}{i!}$$

The HL-LHC will provide a much larger dataset, at the cost of additional pile-up interactions.

 Studies are also used to guide detector design and development, to maximise the expected physics results

SQUARKS AND GLUINOS

Fully hadronic squarks and gluinos

Selections optimised on E_T^{miss} , m_{eff} , E_T^{miss}/m_{eff} and E_T^{miss}/H_T

- Events with 2 to 6 jets
- Backgrounds: Z(vv)+jets, W+jets, ttbar
- Assumed μ=140, σ_{bkg}=10%

Expected 95%
 CL limits with
 the best SR for
 each model

Selection	Channel									
Selection	2jl	2jm	3j	4jl	4jm	4jt	5j	6jl	6jm	6jt
$p_{\rm T}(j_1) [{\rm GeV}] >$				160)					
$N_{\rm jets}(p_{\rm T} > 60 \ [{\rm GeV}]) \ge$		2	3		4		5		6	
$E_{\rm T}^{\rm miss}$ [GeV] >				160)					
$\Delta \phi(\text{jet}, E_{\text{T}}^{\text{miss}})_{\text{min}} \text{ [rad]} >$			0.4 ()	$(i_1, j_2, j_3), 0.2$ (a)	all $p_{\rm T} > 40$	GeV jets)			
$E_{\rm T}^{\rm miss}/m_{\rm eff}>$	-	-	0.3	0.35	0.25	-	0.25	0.25	0.35	0.15
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV^{1/2}}] >$	8	15	-	-	-	10	-	-	-	-
$m_{\rm eff} [{\rm GeV}] >$	4500, 5000	4500, 490	00 4000	4000, 3800) 4000	4500	4000	3400	3500	5000

ATL-PHYS-PUB-2014-010

Expected Sensitivity

Discoverable squark pair production models already excluded with 36.1 fb⁻¹ (ATLAS-CONF-2017-022)

- Gluinos are in similar situation
- HE-LHC would be needed to discover these particles

THIRD GENERATION SQUARKS

 \tilde{B}

 \tilde{W}

ATL-PHYS-PUB-2014-010

ATL-PHYS-PUB-2013-011

Multi-jet and single lepton search

11 fully hadronic SRs (6+ jets)

• E_T^{miss} and m_T^{b} (closest b-jet in ϕ) $m_T^b = \sqrt{2 \times p_{\text{T,b}} \times E_T^{\text{miss}} \times (1 - \cos(\Delta \phi))}$

11 single lepton SRs (4+ jets)

- E_T^{miss} and m_T
- Top reconstruction via m_{jjj}
- Backgrounds: ttbar, Z(vv) and ttV (V=W,Z)
- Assumed μ=140, σ_{bkg}=30%
- 95% CL limits from the combination of the best
 SRs of the two channels

ATL-PHYS-PUB-2016-022

Di-lepton search

Targets **compressed scenarios** with $m(t_1)-m(\chi_1)=m(t)$

- one ISR jet, E_T^{miss} and m_{T2}
- Backgrounds: ttbar and *tt*Z
- Assumed μ=200, σ_{bkg}=30%

36.1 fb⁻¹ exclusion 1709.04183

ELECTROWEAK-INOS

ATL-PHYS-PUB-2014-010

Multi-lepton search

Targets WZ-mediated decays

- Backgrounds: WZ and ttV
- Assumed μ=140, σ_{bkg}=30%
- Expected 95% CL limits from combination of nonoverlapping regions

Selection	SRA	SRB	SRC	SRD		
$m_{\rm SFOS}[{\rm GeV}]$	81.2-101.2					
# b-tagged jets	0					
lepton p_T (1,2,3)[GeV]	> 50					
$E_{\rm T}^{\rm miss}[{ m GeV}]$	> 250	> 300	> 400	> 500		
$m_{\rm T} [{\rm GeV}]$	> 150	> 200	> 200	> 200		
$\langle \mu \rangle = 60, 300 \text{fb}^{-1} \text{ scenario}$	yes	yes	yes	_		
$\langle \mu \rangle = 140, 3000 \text{fb}^{-1} \text{ scenario}$	yes	yes	yes	yes		

ATL-PHYS-PUB-2014-010

Higgs mediated decays ($\ell \ell$ and $\tau \tau$)¹²

Additional multi-lepton SRs

• Z-veto for same flavour lepton pairs

Dedicated hadronic taus selection

- Backgrounds: ttbar and WW
- Assumed μ=140, σ_{bkg}=30%
- Expected 95% CL limits from combination of non-overlapping regions

Selection	$SR1\ell 2\tau$
$\# e, \mu$	1
# au	2 (OS)
# <i>b</i> -tagged jets	0
$E_{\rm T}^{\rm miss}$ [GeV]	> 250
$m_{\tau\tau}$ [GeV]	80-130
$ p_T(\tau_1) + p_T(\tau_2) $ [GeV]	> 190
$m_{\rm T}(\ell)$ [GeV]	> 130

ATL-PHYS-PUB-2015-032 CERN-LHCC-2015-020

Higgs mediated decays (bb)

SRB SRC Selection SRA SRD **Reconstruct m_{bb} from Higgs** # of leptons (e, μ) Backgrounds: tt and ttV # *b*-tagged jets 2 m_{bb} [GeV] $105 < m_{bb} < 135$ Assumed μ =200, σ_{bkg} =30% # jets 2 or 3 > 200 > 300 $m_{\rm CT}$ [GeV] > 200 > 300Available for different *m*_T [GeV] > 200 > 250 > 200 > 250 $E_{\rm T}^{\rm miss}$ [GeV] > 300 > 350 > 400 > 450 detector designs $\langle \mu \rangle = 60, 300 \, \text{fb}^{-1}$ scenario yes yes $\langle \mu \rangle = 140, 3000 \, \text{fb}^{-1}$ scenario _ yes yes MVA techniques also explored 10⁵ Events / 50 GeV m(🕺) [GeV] 4///, SM Background σ discovery. Reference $L = 3000.0 \text{ fb}^{-1} \sqrt{s} = 14 \text{ TeV}$ $\sigma_{\rm bkg}$ = 30% tī 1400 10⁴ ATLAS Simulation 95% CL exclusion, Reference tī+V 5 σ discovery. Middle 10³ ≡ μ=200 Reference 1200 95% CL exclusion, Middle Single top 5 σ discovery, Low Other 95% CL exclusion, Low $m(\tilde{\chi}^{0},\tilde{\chi}^{0}) = (600,0) \text{ GeV}$ 1000 10² $(\tilde{\chi}^{0}_{*}, \tilde{\chi}^{0}_{*}) = (500, 300) \text{ GeV}$ L=3000 fb⁻¹ ATLAS Simulation 800 10 <u>=200 600 10⁻¹ 400 200 400 600 800 1000 0 200 m_⊤ [GeV] 400 800 1000 1200 Ž00 600 1400 $m(\tilde{\chi}_{s}^{0}, \tilde{\chi}_{s}^{\pm})$ [GeV]

aup- $\tilde{\chi}_1^0$ au $\tilde{\chi}_1^0$ \boldsymbol{n} τ

SLEPTONS (STAUS)

Hadronic tau search

Targets events with two hadron taus and no other hadronic activity

- Backgrounds: W+jets and ttbar
- Assumed μ=200, σ_{bkg}=20,30,50%
- No discovery sensitivity is found for pure τ_R production due to the small cross section

 $M_{\tau\tau} \, [GeV]$

m_∓ [GeV]

Summary

The reach of simplified SUSY searches at the HL-LHC has been explored.

- A comprehensive programme spanning from strong to electroweakly produced sparticles
- In some cases, higher center of mass energies will be needed to make a discovery

The search for SUSY continues!

- Many interesting prospects in preparation
- We'll keep looking into corners (e.g. R-parity violating and longlived SUSY)

Stay tuned!

Thanks for your attention

