VLQs coupling determination at the LHC and future hadron colliders

Daniele Barducci

with Luca Panizzi

arXiv:1610.02325
Vector-like Quarks

VLQs are new colored states whose left- and right-handed component transform in the same way under the SM gauge group

\[\mathcal{L} \sim g \, j^\mu, + W^+_\mu + h.c. \]

V-A interaction

\[j_L^\mu = \bar{f}_L \gamma^\mu f'_L \quad j_R^\mu = 0 \]

\[j^\mu = j_L^\mu + j_R^\mu = \bar{f} \gamma^\mu (1 - \gamma^5) f' \]

Vector interaction

\[j_{L,R}^\mu = \bar{f}_{L,R} \gamma^\mu f'_{L,R} \]

\[j^\mu = j_L^\mu + j_R^\mu = \bar{f} \gamma^\mu f' \]

For VLQs a gauge invariant mass term is allowed

\[\mathcal{L}_{\text{mass}} = m_{VLQ} \, \bar{Q}_L Q_R + h.c. \]
They appear in many NP models that try to address the SM hierarchy problem.
Vector-like Quarks

They appear in many NP models that try to address the SM hierarchy problem.

- Composite Higgs
- Little Higgs
- Extra dimensions
- Non minimal SUSY
- …

In CHMs they control the level of fine tuning of the theory. They are thus expected to be found around the TeV scale.
Vector-like Quarks

They appear in many NP models that try to address the SM hierarchy problem.

- Composite Higgs
- Little Higgs
- Extra dimensions
- Non minimal SUSY
- ...

In CHMs they control the level of fine tuning of the theory. They are thus expected to be found around the TeV scale.

This has motivated an intense experimental activity.
Vector-like Quarks searches at the LHC

Assuming mixing with only the 3rd generation of SM quarks

\[T \rightarrow W^+ b, Zt, Ht \quad B \rightarrow W^- t, Zb, Hb \]
\[X \rightarrow W^+ t \quad Y \rightarrow W^- b \]

All these channels are covered by LHC searches
Vector-like Quarks properties

In the minimal scenario they interact with the SM through Yukawa terms.

D4 interactions can only be written for singlets, doublet and triplets of $SU(2)_L$.

<table>
<thead>
<tr>
<th>$SU(2)_L$</th>
<th>$U(1)_Y$</th>
<th>ψ</th>
<th>L_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/3</td>
<td>T</td>
<td>$q_L H^c t_R$</td>
</tr>
<tr>
<td></td>
<td>-1/3</td>
<td>B</td>
<td>$q_L H b_R$</td>
</tr>
<tr>
<td>2</td>
<td>7/6</td>
<td>(X, T)</td>
<td>$\psi_L H t_R$</td>
</tr>
<tr>
<td></td>
<td>1/6</td>
<td>(T, B)</td>
<td>$\psi_L H^c t_R, \psi_L H b_R$</td>
</tr>
<tr>
<td></td>
<td>-5/6</td>
<td>(B, Y)</td>
<td>$\psi_L H^c b_R$</td>
</tr>
<tr>
<td>3</td>
<td>2/3</td>
<td>(X, T, B)</td>
<td>$\bar{q}_L \tau^a H^c \psi_R^a$</td>
</tr>
<tr>
<td></td>
<td>-1/3</td>
<td>(T, B, Y)</td>
<td>$\bar{q}_L \tau^a H \psi_R^a$</td>
</tr>
</tbody>
</table>

Left- and right- handed chiral component rotate in a different way

$$\frac{\tan \theta^R}{\tan \theta^L} = \frac{m_q^{SM}}{m_{VLQ}} \quad \text{for} \quad SU(2)_L = 1, 3$$

$$\frac{\tan \theta^L}{\tan \theta^R} = \frac{m_q^{SM}}{m_{VLQ}} \quad \text{for} \quad SU(2)_L = 2$$

$m_{VLQ} \gg m_q^{SM}$: one of the two chiral-coupling is always suppressed.
Vector-like Quarks properties

- The coupling is almost pure Left or Right
- Final state gauge bosons and quarks have a non-zero polarization

A difference in the kinematic of the decay product is expected

Slightly different reach between the two hypotheses
Gauge boson polarization

- Gauge bosons tend to have a dominant longitudinal component
- No kinematic difference in the two coupling hypotheses

\[
T \rightarrow Zt \text{ decay}
\]

\[
|M|_L^2 = \frac{g^2}{2} \sin^2 \theta_L^u (m_T^2 - m_W^2) \\
|M|_R^2 = 0 \\
|M|_0^2 = \frac{g^2}{4} \frac{m_T^2}{m_W^2} \sin^2 \theta_L^u (m_T^2 - m_W^2)
\]

\(\mathcal{O}(1\%)\) transverse component

Daniele Barducci
VLQs coupling determination at the LHC and future hadron colliders
CERN
Top quark polarization

Top quark decay product carry information on its polarization

Top quark rest frame

\[
\frac{1}{\Gamma_l} \frac{d\Gamma_l}{d \cos \theta_{f, \text{rest}}} = \frac{1}{2} \left(1 + \kappa_f P_t \cos \theta_{f, \text{rest}} \right)
\]

Decaying top

Top quark would-be momentum in the lab frame

Laboratory frame

Boost to Lab. frame produces harder object for positively polarized top quarks, i.e. right-handed coupling

Easier to pass selection cuts for right-handed VLQs: higher mass reach
Top quark polarization

p_T distribution of the lepton from a polarized top from a VLQ decay

If a VLQ were to be discovered at the LHC can this difference be used to disentangle the two hypotheses?

- Assume we can subtract the SM background

- Test the discrimination power via a χ^2

$$\chi^2 = \sum_{i=1}^{n_{bins}} \frac{(L_i - R_i)^2}{\max(L_i, R_i)}$$
LHC discrimination power

Charged 2/3 VLQ decaying entirely in Zt in the single ℓ plus E_T^{miss} final state

Mostly invisible Z : the lepton comes from the top decay

- The binning impacts the discrimination reach. Optimization possible
- LHC able to discriminate the hypotheses in all the discovery range accessible
HE-LHC discrimination power

Charged 5/3 VLQ decaying entirely in Wt in the same-sing 2ℓ final state

Must pick the lepton from the top, and from not the W decay

Identification possible: the lepton from the top is always softer

Use the sub-leading lepton distribution to perform the discrimination
HE-LHC discrimination power

LHC-33

\[XX \rightarrow WtWt, \sqrt{s} = 33 \text{TeV}, \epsilon_{\text{syst}} = 20\% \]

200 GeV binning

\[m_X \text{ [GeV]} \]

L [1/fb]

LHC-100

\[XX \rightarrow WtWt, \sqrt{s} = 100 \text{TeV}, \epsilon_{\text{syst}} = 20\% \]

300 GeV binning

\[m_X \text{ [GeV]} \]

L [1/fb]

High energy hadron collider prototypes are able to discriminate the coupling hypothesis in all their accessible discovery range.
Conclusions

- HL-LHC and HE-LHC will increase the exclusion-discovery reach on the masses of BSM states

- Important to assess whether these machines will be able to discriminate amongst different model hypotheses should NP be found

- Polarized top quarks arising from VLQs decay can be used as a probe to discriminate the coupling structure of the VLQs with SM states

- HL-LHC and HE-LHC will be able to discriminate between left- and right-handed coupling in all their accessible discovery range

Open questions

- Focused on pair-produced VLQs: what about single production?

- What can be said if a VLQ doesn’t decay into a top quark?