Searches for long-lived particles at LHCb
Workshop on the physics of HL-LHC, and perspectives at HE-LHC

Carlos Vázquez Sierra,
on behalf of the LHCb collaboration

Nikhef, National Institute for Subatomic Physics,
Amsterdam, The Netherlands.

October 31, 2017
Phase-II LHCb Upgrade EoI: Opportunities in flavour physics, and beyond, in the HL-LHC era [CERN-LHCC-2017-003]

- **Challenging conditions** – higher rate, pile-up, occupancy and fluence.
- Expect to collect 300 fb^{-1} by the end of (LHCb) Phase-II.
- Phase-II detector sub-systems have to be able to cope with such conditions.
- In particular – **trigger** and **tracking systems** are crucial for LLP searches.
The LHCb experiment

- Fully instrumented in $2 < \eta < 5$ (see comparison below) [IJMP A30 (2015) 1530022]
- Lower luminosity (1/8 of ATLAS/CMS during Run I) \rightarrow **lower pileup**.
- **Particle identification** capabilities (RICH) and excellent **mass** resolution.
- Good **jet reconstruction**: [JINST 10 (2015) P06013] \rightarrow Run I $b(c)$-tagging efficiency of 65(25)% – very reduced contamination (0.3%).
- **Will be even better for Phase-II** [CERN-LHCC-2017-003]
The LHCb trigger

- Very soft and versatile trigger system.
 - Hardware level L0:
 → to be removed for Phase-I.
 → benefit for low mass searches.
 - Software level HLT:
 → Topological triggers on DV.
 → Online μ-ID and jets in turbo.
 - Turbo (since 2015) lines:
 → Full event reco can be saved.
 → Any event part is persisted.
 → Allow to work directly on them.

- Foreseen improvements for μ and e:
 → μ reco down to $p_T \sim 80$ MeV/c (Run II).
 → Dedicated $\mu\mu$ lines (efforts to also add e lines).
- Trigger on emerging jets (no pointing to PV):
 → Characteristic of dark sector (shower) signatures.
The LHCb reconstruction

Downstream tracks:
- Reconstruction of LLP decaying beyond VELO.
- Tracks with worse vertex and momentum resolution.
- Trigger proposed on downstream tracks → better for LLP (≤ 2 m) signatures.
- Offline studies on-going [LHCb-PUB-2017-005]

Upstream tracks:
- Reconstruction of soft charged particles bending out of the acceptance.
- New tracker (UT) – high granularity, closer to beam pipe.
- Proposal to add magnet stations (MS) inside the magnet → improve low p resolution.
The LHCb reconstruction

- **Long tracks:**
 - Excellent spatial and momentum resolution.
 - Crucial for LLP decaying within VELO (most of our LLP searches).
 - Presence of a **VELO envelope** (RF-foil) at ~ 5 mm from beam:
 - Background dominated by heavy flavour below 5 mm.
 - Background dominated by **material interactions** above 5 mm.
 - Having a precise model of material interactions is crucial for LLP searches.
 - A **detailed material veto map** is used (paper in preparation):
 - Sensitivity improvement by one to two orders of magnitude.
The LHCb VELO

- **Phase-II VErtex LOcator:** [CERN-LHCC-2017-003]
 - Probably based on Phase-I VELO (silicon pixels).
 - Access to shorter lifetimes, better PV and IP resolution, and real-time alignment.
 - But – 10x multiplicity, pile-up and radiation damage w.r.t. Phase-I.
 - **Possibility of removing RF-foil** for Phase-II:
 → better IP resolution + no material interactions.

![IP resolution graphs](image-url)

- LHCb simulation (Phase-I VELO)
 - 2 × 10^{33} cm^2 s^{-1} (Phase-I conditions)
 - 2 × 10^{34} cm^2 s^{-1} (Phase-II conditions)

- Scenarios:
 - **Scenario 1 (with RF-foil)** (Phase-I conditions)
 - **Scenario 2 (no RF-foil)** (Phase-II conditions)

Carlos Vázquez Sierra
HL/HE-LHC workshop
October 31, 2017
Direct searches for LLPs at LHCb

Unique coverage complementary to ATLAS/CMS:
- Soft trigger and forward acceptance \rightarrow **lower masses** (few GeV/MeV for jets/leptons).
- Excellent vertexing capabilities \rightarrow **lower lifetimes** (~ 1 ps).

Exploit LHCb capabilities for direct searches:
- Search for LLP produced in B and D decays \rightarrow see talk tomorrow by Martino.
- Search for LLP produced in the pp collision \rightarrow **this talk**.
- Measure detachment (~ 0.1 ps) of LLP decaying into hadrons (+leptons) \rightarrow future?
- Proposal for a compact sub-detector (CODEX-b) \rightarrow see next talk by David.
Massive LLPs decaying to $\mu + \text{jets}$

- **Massive LLP into $\mu + \text{two quarks (jets)}$.**

- **Signature sensitive to several benchmark models:**
 - mSUGRA RPV neutralino,
 - Right-handed (Majorana) neutrinos,
 - Simplified MSSM topologies:

One particular example: **decay of a Higgs-like particle** into two LLPs.
- Look for a **single displaced vertex** with several tracks + high p_T muon.
- Background dominated by $b\bar{b}$ events and material interactions.
Massive LLPs decaying to $\mu + \text{jets}$

- Search with full Run I (3 fb$^{-1}$) LHCb data published. [EPJC (2017) 77:224]
- Results interpreted in $H^0 \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1$ benchmark model:

- Stringent limits – rejecting $\mathcal{B}(H^0 \rightarrow \chi\chi) > 10\%$ down to 30 GeV/c2 (5 ps).
- No excess observed.
Massive LLPs decaying to $\mu + \text{jets}$

- **Prospects for Phase-II** → some **naive extrapolations** below:
 - Scale signal and background – consider increase of cross-sections,
 - Conservative assumptions for jet reco, trigger, and material interactions,
 - Optimistic assumptions for pile-up effect.

![Graph showing regions where $B(H^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0) > 5\%$ is excluded at 95% CL](image)

Regions where $B(H^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0) > 5\%$ is excluded at 95% CL

- LHCb reachable
- LHCb published Run 1
- LHCb jet substructure
- LHCb preliminary

Different constraints on $B(H^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0)$ at 95% CL with 300 fb$^{-1}$ at LHCb

- $B > 5.0\%$ excl.
- $B > 1.0\%$ excl.
- $B > 0.5\%$ excl.
- $B > 0.1\%$ excl.

- **Our main aim is to reach lower masses and lower lifetimes.**
- **Removal of L0 trigger (Phase-I)** → much higher trigger efficiencies at the end!
- Jet reconstruction efficiencies will be better for lower masses.
- Expected a **better knowledge of material interactions** (or much less interactions!).
Massive LLPs decaying to jet pairs

- Possible scenarios to accommodate this signature:
 - LSP in gravity mediated SUSY,
 - LSP in SUSY models with BNV or LNV,
 - HV \(\pi_\nu \) decaying to \(b\bar{b} \) – especially SM-like \(H^0 \rightarrow \pi_\nu\pi_\nu \) production.
- In most of the cases only one of the two \(\pi_\nu \) decays into the LHCb acceptance.
- Experimental signature is a single displaced vertex with two associated jets.

Reconstruct the displaced vertex and find two associated jets.
- Use \(\pi_\nu \) detachment to discriminate between signal and background.
- Background dominated by \(b\bar{b} \) events and material interactions.
Massive LLPs decaying to jet pairs

- Search with full LHCb Run I (3 fb$^{-1}$) dataset published [LHCb-PAPER-2016-065]
- Limits at 95% C.L. as a function of π_ν lifetime for several π_ν masses:

![Graph showing limits at 95% C.L. as a function of π_ν lifetime for several π_ν masses.]

- No excess found – plan to analyse LHCb Run II + go to lower π_ν masses.
 → Working on new dedicated trigger lines for displaced jets.
- Develop jet substructure tools to study multi-jets at lower masses.
- Develop a selection for emerging jets → confining HV (dark showers) [arXiv:1708.05389]
Massive LLPs decaying to jet pairs

- Compare with recasted results from ATLAS and CMS (plot by M. Borsato):
 - CMS 18.5 fb^{-1} [PRD 91 (2015) 012007], recast [PRD 92 (2015) 073008]
 - ATLAS 20.3 fb^{-1} [PRD 92 (2015) 012010] [PLB 743 (2015) 15-34]

- Parameter space where $\mathcal{B}(H^0 \rightarrow \pi\nu\pi\nu) > 50\%$ is excluded at 95% C.L. is shown.
- Disclaimer: new 13 TeV results from CMS not included in the recast [CMS-PAS-EXO-16-003]
- Keep complementarity w.r.t. ATLAS and CMS in Phase-II searches.
- Consider similar strategy w.r.t. ATLAS and CMS in Phase-II searches.

[EPJC (2016) 76:664]
Massive LLPs decaying to jet pairs

- Prospects for Phase-II → same naive assumptions as before:

- Again – our main aim is to reach lower masses and lower lifetimes.
- Removal of L0 (Phase-I) will be beneficial as well → access to lower jet masses.
- Higher pile-up in Phase-II:
 - Impact of pile-up on jet reconstruction efficiencies needs to be studied in much detail.
 - We have reasons to be optimistic – preliminary studies ongoing + ideas (see below).
- Some possible improvements to mitigate the effect of the increased pile-up:
 - Remove neutrals (more pile-up dependent) from jet reco (only charged tracks).
 - Consider ML techniques to seize pile-up contributions as in ATLAS and CMS.
Conclusions

- Expect to collect 300 fb^{-1} by the end of Phase-II.
- A lot of potential in Phase-I triggers and VELO \rightarrow also potential for Phase-II.
- Ace up our sleeve \rightarrow our complementarity w.r.t. other LHC experiments.
- Plenty of prospects from existing results and ideas of new searches:
 - LLP searches at lower masses and lifetimes \rightarrow π_v, $\tilde{\chi}_1^0$, RH neutrinos...
 - Develop jet substructure tools to study multi-jets at lower masses.
 - More realistic models for HV searches – dark showers (emerging jets).
 - e in final states – sensitive to lower masses (no sensitivity anywhere else at the LHC).
 - Fractional charge particles, monopoles, quirks – sensitivity studies needed.
- Encouraging proposals (increasing interest!) from the theory community:
 - Confining HV at LHCb [arXiv:1708.05389]
 - Soft bombs [JHEP 08 (2017) 076]
 - Rare Z decays to a hidden sector [arXiv:1710.07635]
- We are looking forward to new ideas \rightarrow do not hesitate to contact us!
Is there anything beyond the Standard Model?

Thanks for your attention!
Backup
Massive LLPs decaying to $\mu + \text{jets} – \text{recast}$

- Limits from this analysis recasted to look into sterile neutrinos [arXiv:1706.05990]

- Could we get best world-limit (5–10 GeV/c2) with same kind of search?
- Dedicated search with Run II data in preparation.
Confining HV at LHCb [arXiv:1708.05389]

FIG. 1: Left panel: Z'_p cross section reach. Green line: cross section for a photon-like coupling, suppressed by $\epsilon = 0.02$. Right panel: Projected upper bounds on $\text{BR}(h \rightarrow \text{twin bottom quarks})$ using the 1DV search. This process produces lighter twin mesons $\hat{\omega}/\hat{\eta}$ followed by $\hat{\omega} \rightarrow \mu^+\mu^-$. Horizontal green line: prediction in a variation of the Fraternal Twin Higgs model (see text); in this context ω_v is a mixture of c' and s'. Green curve: reach for the corresponding decay topology (see text for details).
FIG. 2: Projected bounds from various ATLAS/CMS displaced muons search strategies, see text for details. The brown curve represents an extrapolation of a current analysis, while the green curve represents only a minor modification. The orange and purple projections have aggressive assumptions about backgrounds and will likely weaken following detailed detector simulations. The band widths correspond to $10 \leq \langle N_v \rangle \leq 30$. The blue band is derived from the LHCb search proposed in this work.
FIG. 3: Projected bounds from various displaced $c\bar{c}$ search strategies, see text. Purple curves: ATLAS/CMS reach estimate for DV decays into ≥ 5 charged tracks, with either two DV in the muon spectrometer (solid) or one DV in the inner detector and one in the muon spectrometer (dotted). Brown: analogous ATLAS/CMS reach for $\omega_v \rightarrow b\bar{b}$, $m_{\omega_v} = 11$ GeV.
Turbo stream in Run II

- only exclusive decays (and nothing else) saved

Turbo++:
- Full event reconstruction can be persisted
- Variables such as isolation, objects for jets reconstruction, can be saved

Turbo SP:
- New intermediate solution between Turbo and Turbo++
- Trigger candidate + subset of reconstruction saved

\[[\text{JHEP03(2016)159}] \]