New Proposals for Long-Lived Particle Studies

Workshop on the physics of HL-LHC, and perspectives at HE-LHC CERN, Geneva

31 October 2017

David Curtin
University of Maryland → University of Toronto

There has to be new physics...

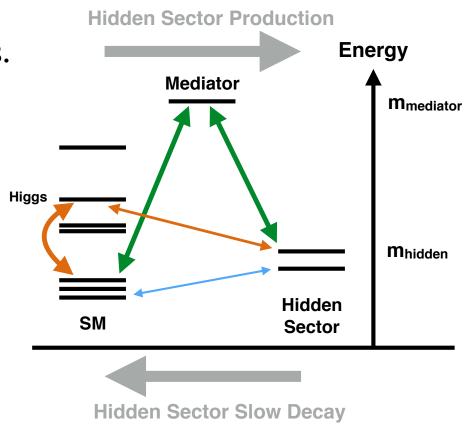
The usual fundamental mysteries (Hierarchy Problem, DM, Baryogenesis, Neutrinos, ...) aren't going anywhere.

Higgs discoveries and DM measurements sharpen these questions!

Canonical solutions (SUSY, WIMP DM, ...) generally involve IR-minimal models, where the new degree of freedom which solves the mystery has sizable direct coupling to the SM.

This leads to irreducible signatures that haven't shown up so far.

... where is it?


Hidden Sectors

Particles & forces hidden from us due to small coupling, not high mass.

Generically arise due to the grammar of QFT.

Confirmed examples: V's, DM

Give non-minimal IR spectra from minimal theory input (e.g. QCD cousins like Hidden Valleys)

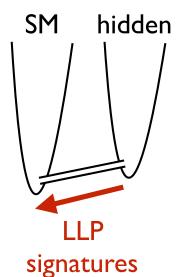
Can couple to SM via small portal couplings, e.g.

Heavy Mediators

Higgs Portal Photon Portal

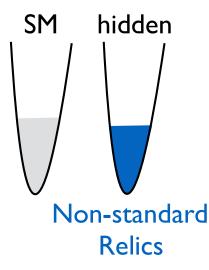
Lessons

I. Exotic Higgs Decays


LHC can probe tiny exotic branching ratios if decays spectacular. Sizable Higgs Portal couplings to new physics are generic.

2. Long Lived Particles are generic

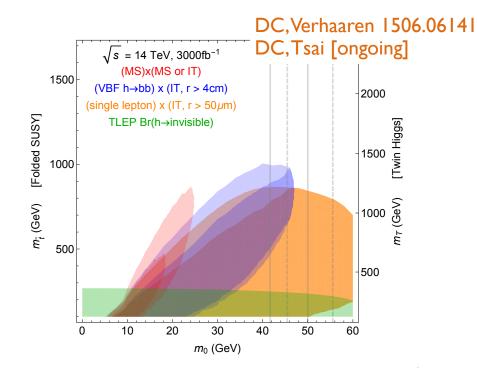
Once produced, Hidden Sector states can only decay back to SM via small portal couplings, generically leading to long lifetimes.


The LLP lifetime is (almost...) a free parameter!

3. Complementarity between Cosmology and Colliders

Models which avoid signatures in one will often show up in the other

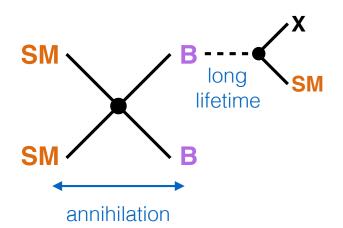
(e.g. dark radiation, DM with structure, etc.)


Neutral Naturalness

Hierarchy Problem can be addressed by uncolored top partners by introducing a discrete symmetry "twist" into SUSY/CH/... models.

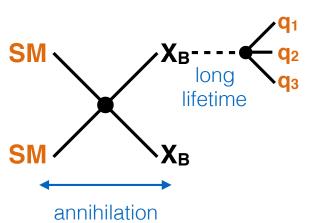
This eliminates colored production signatures of e.g. SUSY! Consistent with LHC null results.

Discrete symmetry introduces hidden copy of QCD talking to SM via Higgs Portal!


→ LLP signatures of Naturalness!!

New LHC LLP searches would give TeV top partner sensitivity!

Many other exciting signatures (quirky top partner pair prod., indirect detection, non-standard cosmology, non-minimal DM sectors, ...)

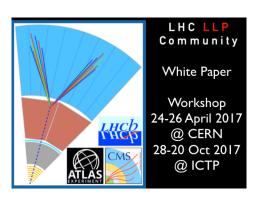

FIMP Dark Matter

The observed DM relic abundance could be set not by the interaction cross section of DM, but by the **lifetime** of a parent particle in thermal equilibrium with the SM: freeze-in mechanism!

Cui, Sundrum 1212.2973

WIMP Baryogenesis

The observed baryon excess could be produced in the decay of a meta-stable WIMP-like parent particle.


The "WIMP-miracle" now works to ensure correct baryon number density.

In both cases: make parent at colliders with observable decay length.

Experimental upshot

This Lifetime Frontier requires systematic search program at LHC and future pp, ee and ep colliders!

Signature space still largely unexplored!

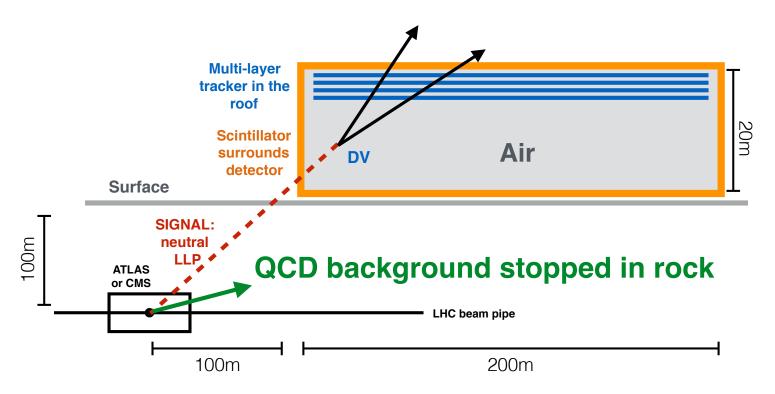
Production Decay	$\gamma\gamma(+ ext{inv.})$	$\gamma + ext{inv.}$	jj(+inv.)	jjℓ	$\ell^+\ell^-(+inv.)$	$\ell_{\alpha}^{+}\ell_{\beta\neq\alpha}^{-}(+inv.)$
DPP: sneutrino pair		SUSY	SUSY	SUSY	SUSY	SUSY
HP: squark pair, $\tilde{q} \rightarrow jX$		SUSY	SUSY	SUSY	SUSY	SUSY
or gluino pair $\tilde{g} \rightarrow jjX$						
HP: slepton pair, $\tilde{\ell} \to \ell X$		SUSY	SUSY	SUSY	SUSY	SUSY
or chargino pair, $ ilde{\chi} o WX$						
HIG: $h \to XX$	Higgs, DM*		Higgs, DM*		Higgs, DM*	
or $\rightarrow XX + inv$.						
HIG: $h \to X + \text{inv.}$	DM*		DM*		DM*	
$ZP: Z(Z') \to XX$	Z', DM*		Z', DM*		Z', DM*	
or $\rightarrow XX + inv$.						
ZP: $Z(Z') \rightarrow X + inv$.	DM		DM		DM	
CC: $W(W') \rightarrow \ell X$			RHν*	RHν	RHν*	RHν*

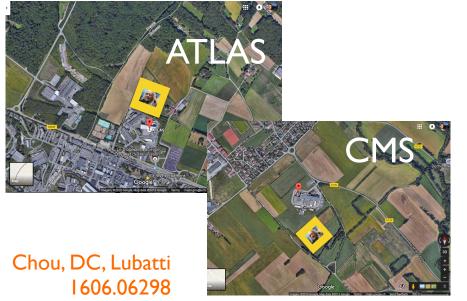
LHC LLP Community

- → LLP simplified model space
- → Search recommendations (first document out soon!)

Production at colliders is vital to discover LLPs, but the main detectors have blind spots due to backgrounds, trigger, geometry:

very short lifetimes < mm
long lifetimes > 100m
low-ish masses (E < ~ 100 GeV)
hadronic/soft decays

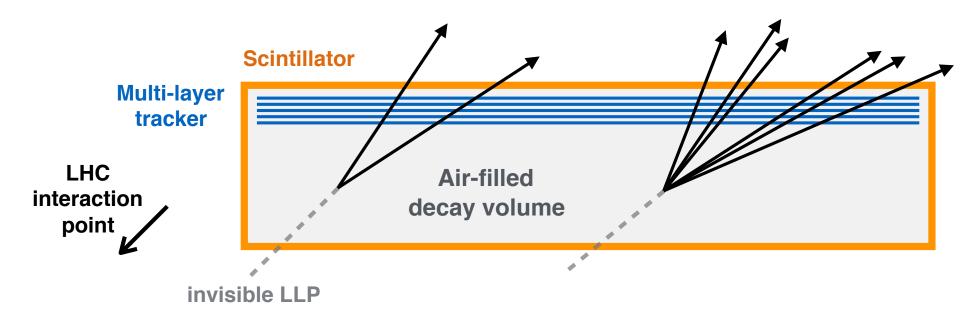



A general-purpose dedicated LLP detector for the HL/HE-LHC

Chou, DC, Lubatti 1606.06298 DC, Peskin 1705.06327

DC, Drewes, McCullough, Meade, Mohapatra, Shelton, Shuve, + 70 [in preparation] & more

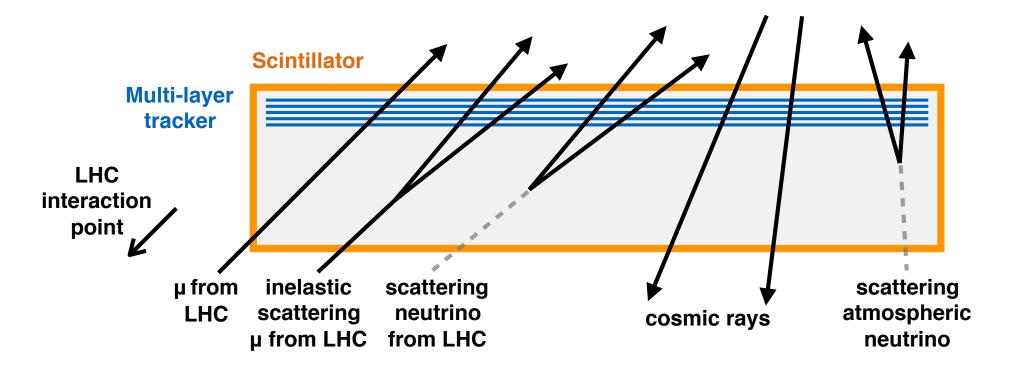
An external LLP detector for the HL- or HE-LHC



Reliance on well-understood technology (RPC, plastic scintillators) means this could be implemented in time for the HL-LHC. But design not set in stone, will explore other options!

Unofficial cost estimates of current design: ~ 40 million USD

Signal Reconstruction

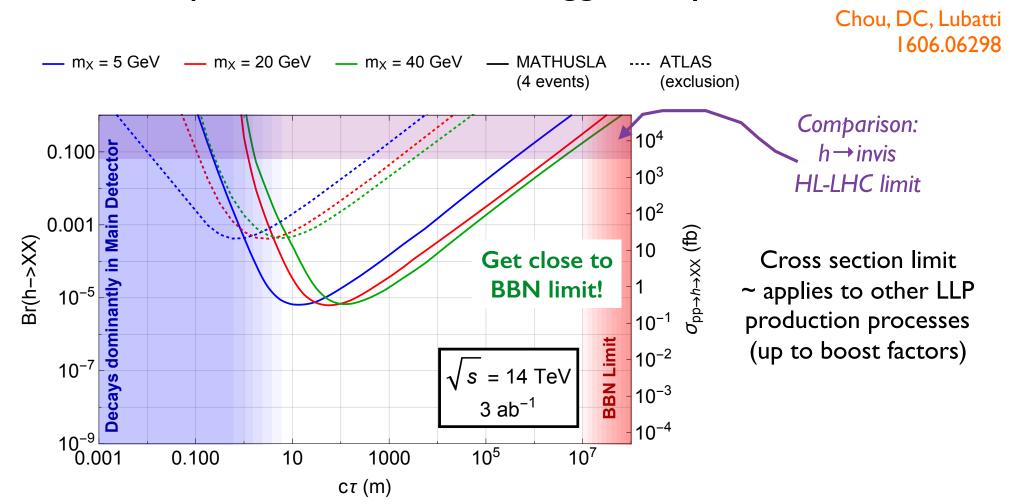

~5% geometric coverage.

Charged particle tracks are reconstructed with ~cm spatial resolution and ~ns timing resolution.

→ determine charged particle speed with ~0.05c precision.

LLP decays are reconstructed as Displaced Vertices (DV) in both **space** and **time**, with strict **geometric requirements** and vetoes.

Backgrounds


Reject using tight DV signal requirements, geometry & timing.

~Zero background regime can be reached!

Cosmic backgrounds can be measured and studied during beam down-time to verify rejection strategies.

Example of Achievable Sensitivity

For LLP production in exotic Higgs decays:

3 orders of magnitude better cross section/lifetime reach than ATLAS search for single DV in MS (due to backgrounds!)

Manage Theory White Paper

Detecting Ultra-Long-Lived Particles: The MATHUSLA Physics Case

Editors:

David Curtin¹, Marco Drewes², Matthew McCullough³, Patrick Meade⁴, Rabindra Mohapatra¹, Michele Papucci⁵, Jessie Shelton⁶, Brian Shuve⁷

Contributors: B. Batell, Timothy Cohen, Nathaniel Craig, Csaba Csaki, Yanou Cui, Francesco D'France R. Dev Keith Dienes Marco Drewes Rouven Essio Jared Evans Marco Farina Thomas Collaboration of 80+ theorists

Comprehensive theory motivation:

		5.2	Dark Matter	5.5	Bottom-Up Considerations 6	Signatures
	ntroduction	5.2.1	Asymmetric Dark Matter	5.5.1	Hidden Valleys 7	Possible Extensions
		5.2.2	Dynamical Dark Matter	5.5.2	Exotic Higgs Decays 8	Conclusions
	etters of Support	5.2.3	Freeze-In Scenarios	5.5.3	DM and mono- X searches .	
5 T	heory Motivation for Ultra-Long Lived Particles	5.2.4	SIMPs and ELDERs	5.5.4	SM + V: Dark Photons	
5.1	Naturalness	5.2.5	Decoupled Hidden Sectors .	5.5.5	SM + S: Singlet Extensions.	
5.1.1	Supersymmetry	5.2.6	Coannihilation	5.5.6	Axion-Like Particles	
5.1.1.1		J.J	Baryogenesis			
5.1.1.2	Gauge Mediation	5.3.1	WIMPy Baryogenesis			
5.1.1.3	Mini-Split SUSY	5.3.2	Leptogenesis			
5.1.1.4	Stealth SUSY	5.4	Neutrinos			
5.1.1.5	Axinos	5.4.1	Introduction and Motivation			
5.1.1.6	Sgoldstinos	5.4.2	Type I see-saw extension to SM			
5.1.2	Neutral Naturalness	5.4.3	Neutrino-related Z' signatures			
5.1.3	Composite Higgs	5.4.4	Neutrino-related Higgs-portal signatures			
5.1.4	Relaxion	5.4.5	Local $B-L$ breaking Higgs signatures in			
		5.4.6	Pseudo-Dirac neutrinos			

Aim: comprehensive report by early 2018

MATERIA collaboration

Name	Email	Institution	
Cristiano Alpigiani	Cristiano.Alpigiani@cern.ch	University of Washigton - Seattle	
Akaxia Danae Cruz	a.cruz@cern.ch	University of Washigton - Seattle	
Audrey Katherine Kvam	audrey.katherine.kvam@cern.ch	University of Washigton - Seattle	
Henry Lubatti	lubatti@u.washington.edu	University of Washigton - Seattle	
Mason Louis Proffitt	mason.louis.proffitt@cern.ch	University of Washigton - Seattle	
Joseph Rothberg	Joseph.Rothberg@cern.ch	University of Washigton - Seattle	
Rachel Christine Rosten	rachel.rosten@cern.ch	University of Washigton - Seattle	
Gordon Watts	gwatts@uw.edu	University of Washigton - Seattle	
Emma Torró Pastor	emma.torro.pastor@cern.ch	University of Washigton - Seattle	
Nina Anikeeva	nina.anikeeva@gmail.com	University of Washigton - Seattle	
Sunna Banerjee	Sunanda.Banerjee@cern.ch	Fermi National Accelerator Laboratory	
Yan Benhammou	Yan.Benhammou@cern.ch	Tel Aviv University	
Meny Ben Moshe	Menyb@post.tau.ac.il	Tel Aviv University	
Tingting Cao	Tingting.cao@cern.ch	Tel Aviv University	
Erez Etzion	Erez.Etzion@cern.ch	Tel Aviv University	
Tamar Garbuz	tgarbuz137@gmail.com	Tel Aviv University	
Gilad Mizrahi	giladmiz01@gmail.com	Tel Aviv University	
Yiftah Silver	yiftahsi@gmail.com	Tel Aviv University	
Dan Levin	dslevin@umich.edu	University of Michigan	
David Curtin	david.r.curtin@gmail.com	University of Maryland	
Sarah Eno	Sarah.Eno@cern.ch	University of Maryland	

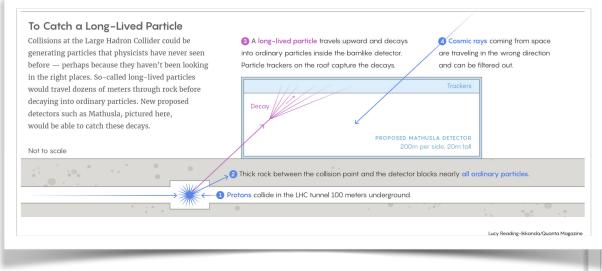
Mario Rodriguez Cahuantzi	mario.rodriguez.cahuantzi@cern.ch	Autonomous University of Puebla	
Martin Hentschinski	martin.hentschinski@gmail.com	Autonomous University of Puebla	
Mario Ivan Martinez Hernandez	Mario.Martinez.Hernandez@cern.ch	Autonomous University of Puebla	
Guillermo Tejeda Munoz	Guillermo.Tejeda.Munoz@cern.ch	Autonomous University of Puebla	
Arturo Fernandez Tellez	Arturo.Fernandez.Tellez@cern.ch	Autonomous University of Puebla	
Martin Alfonso Subieta Vasquez	martin.alfonso.subieta.vasquez@cern.ch	Autonomous University of Puebla	
John Paul Chou	john.paul.chou@cern.ch	Rutgers, State University of New Jersey	
Luke Kasper	lukekasper25@gmail.com	Rutgers, State University of New Jersey	
Amitabh Lath	Amitabh.Lath@cern.ch	Rutgers, State University of New Jersey	
Steffie Ann Thayil	steffie.ann.thayil@cern.ch	Rutgers, State University of New Jersey	
Charlie Young	young@slac.stanford.edu	SLAC	
Robert Arthur Mina	robmina@stanford.edu	SLAC	
Paolo Camarri	paolo.camarri@cern.ch	Universita' di Tor Vergata	
Roberto Cardarelli	roberto.cardarelli@roma2.infn.it	Universita' di Tor Vergata	
Rinaldo Santonico	santonic@roma2.infn.it	Universita' di Tor Vergata	
Antonio Policicchio	Antonio.Policicchio@cern.ch	Universita della Calabria	
Marco Schioppa	Marco.Schioppa@cern.ch	Universita della Calabria	
Stefano Giagu	Stefano.Giagu@cern.ch	Sapienza Università di Roma	
Cristiano Sebastian	Cristiano.Sebastiani@cern.ch	Sapienza Università di Roma	

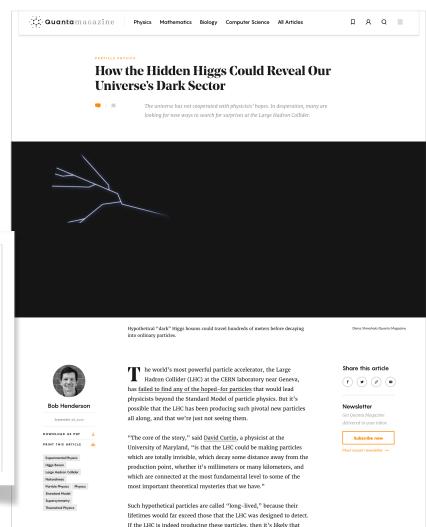
Physics Today article about LLPs and hidden sectors (DC, Raman Sundrum)

http://physicstoday.scitation.org/doi/10.1063/PT.3.3594

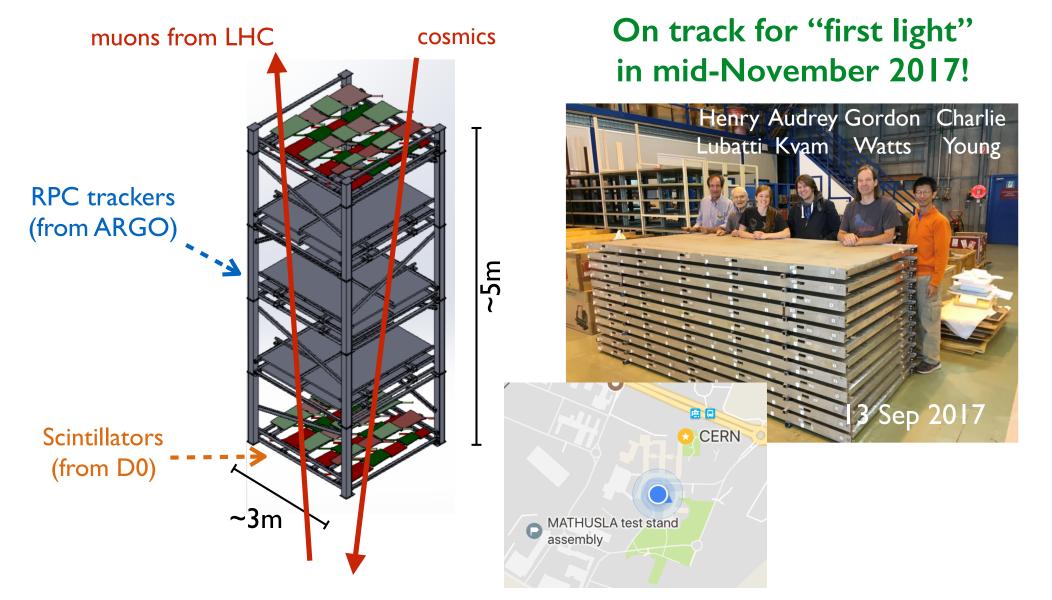
In-depth feature article in Quanta Magazine

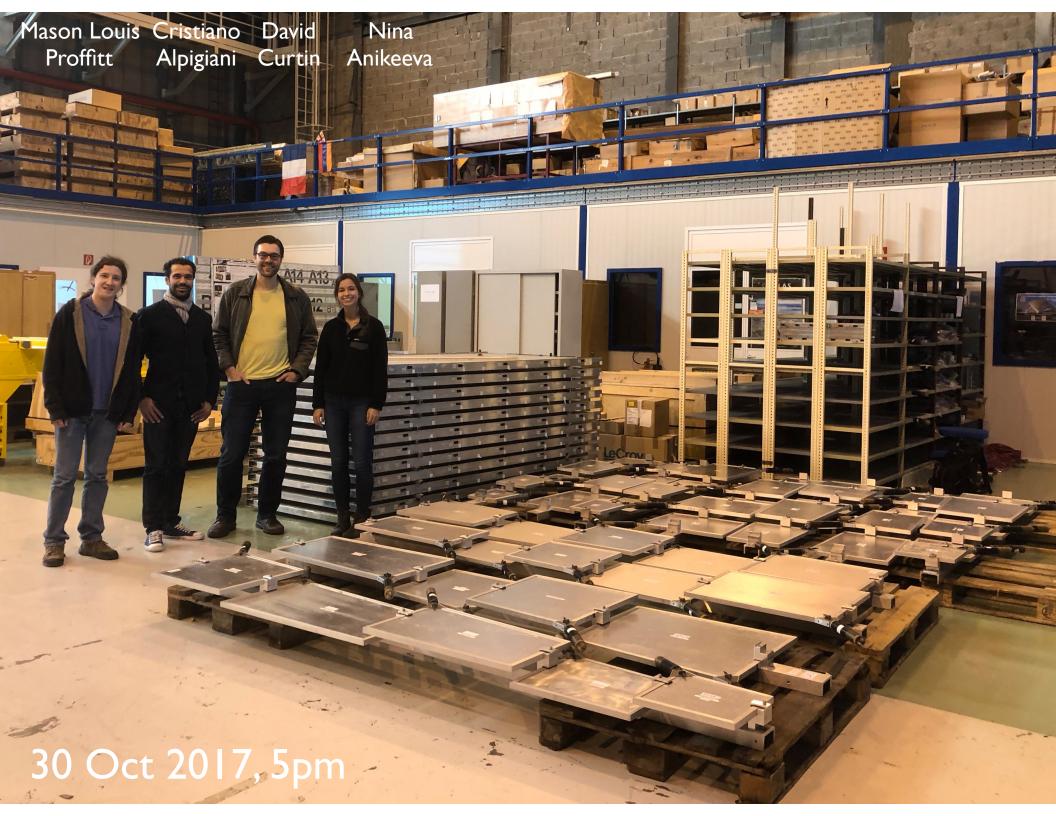
https://www.quantamagazine.org/how-the-hidden-higgs-could-reveal-our-universes-dark-sector-20170926/

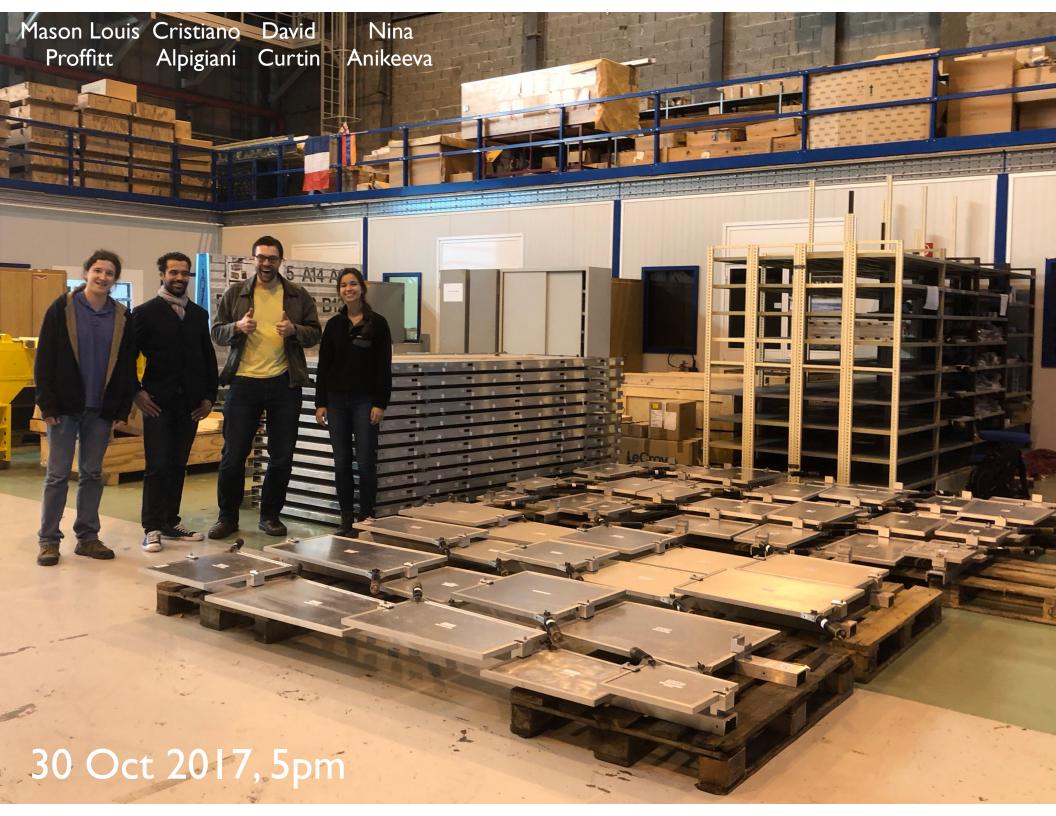

Picked up by Wired magazine:

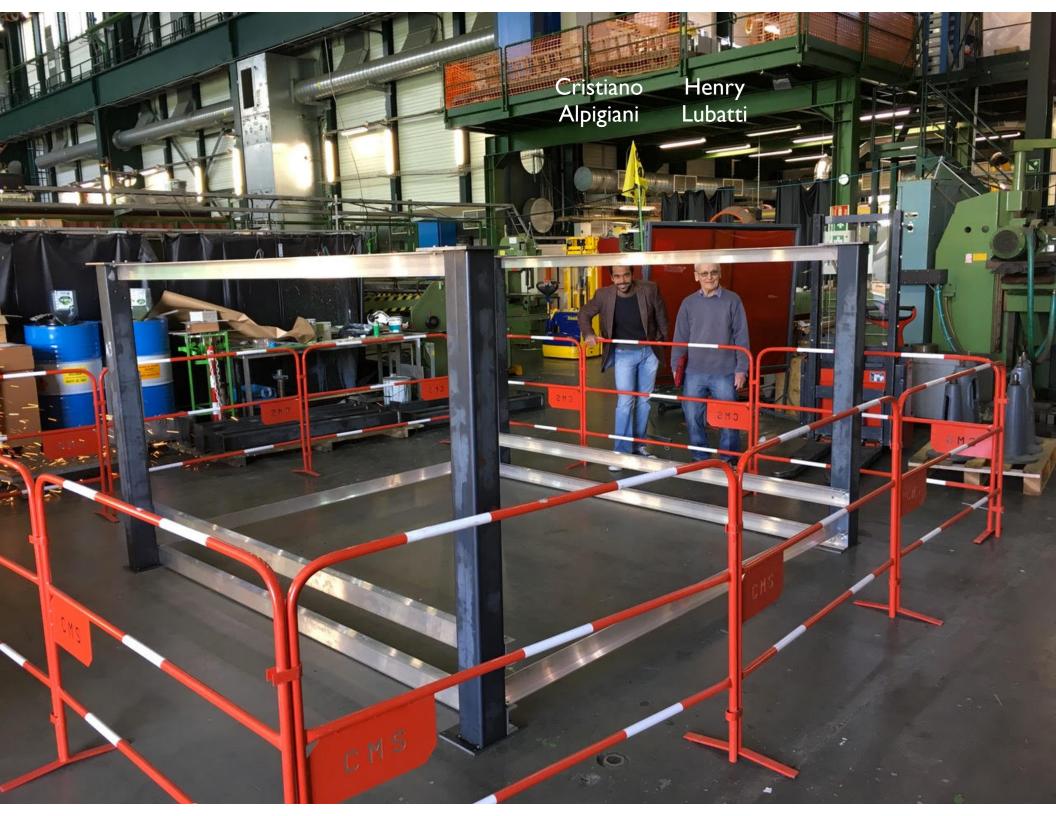

https://www.wired.com/story/hidden-higgs-dark-sector/

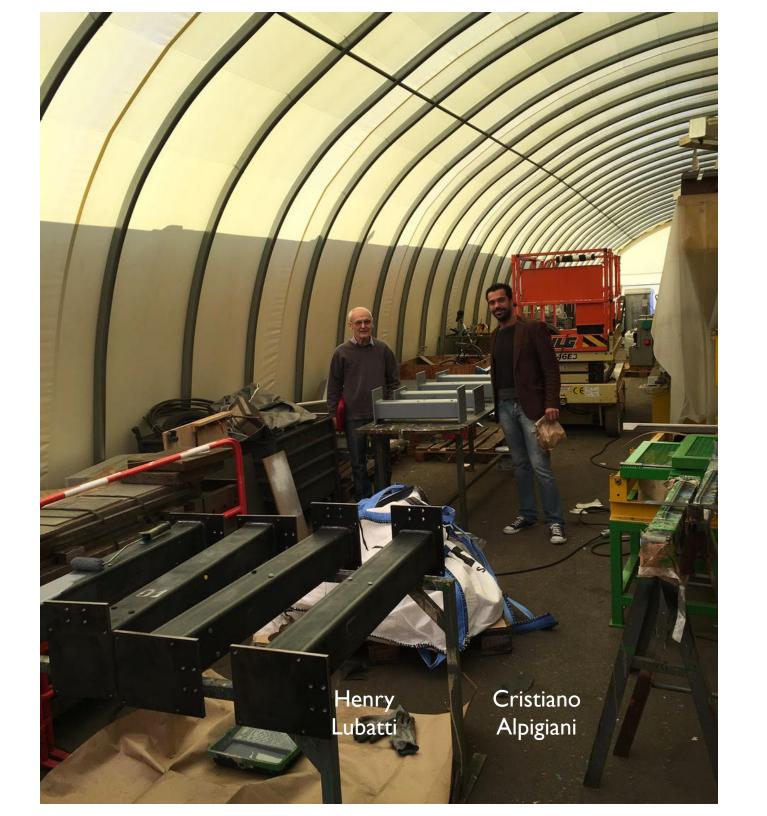
JQI "Relatively Certain" Podcast: Long Live MATHUSLA


http://jqi.umd.edu/news/podcast/long-live-mathusla






MATERIA Demonstrator


Demonstrator above ATLAS to demonstrate cosmic ray rejection and calibrate MC currently under construction at CERN!

MATERIA Demonstrator

Lost of work in next few weeks & beyond.

Assembling detector

Cosmic ray analysis

DAQ/monitoring/storage

Setting some toy BSM limits to demonstrate

<much more>

timed-DV reconstruction

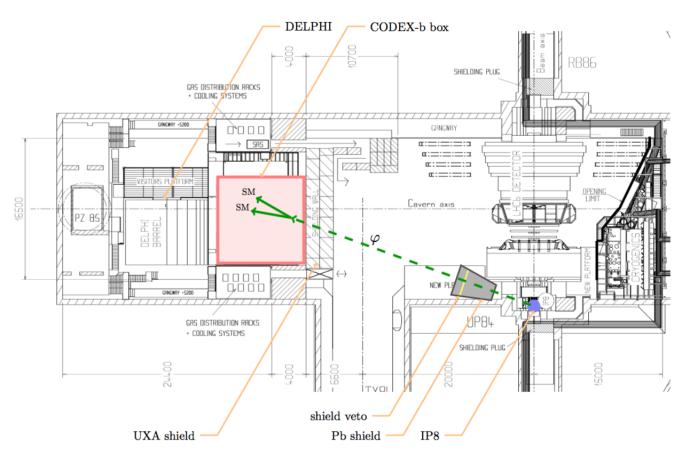
Results from test stand + theory white paper will form raw material for letter-of-intent & official proposals in 2018!

We need more people! Join us if you're interested!

see Dean Robinson's ball

CODEX-b

A dedicated LLP detector for LHCb

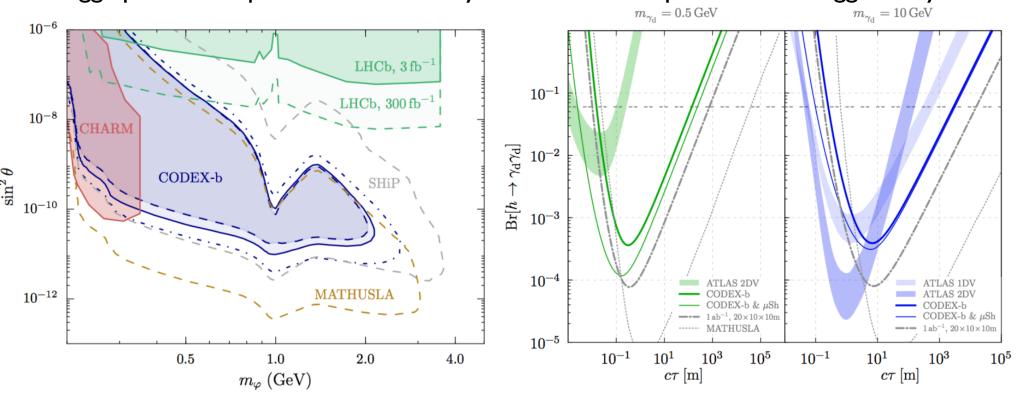

CODEX-b @ LHCb

DAQ will be moved out of LHCb cavern in 2020. Opportunity to instrument ~ (10m)³ to detect LLPs, same principle as MATHUSLA. (Double the volume if DELPHI museum piece could be moved...)

Requires additional shielding and vetos.

Could be integrated LHCb subdetector.

Collision BGs can be estimated by putting small cosmic ray telescope in cavern. Doing this soon!?



General strategy: Look for decays-in-flight of LLPs from IP8

CODEX-b Sensitivity

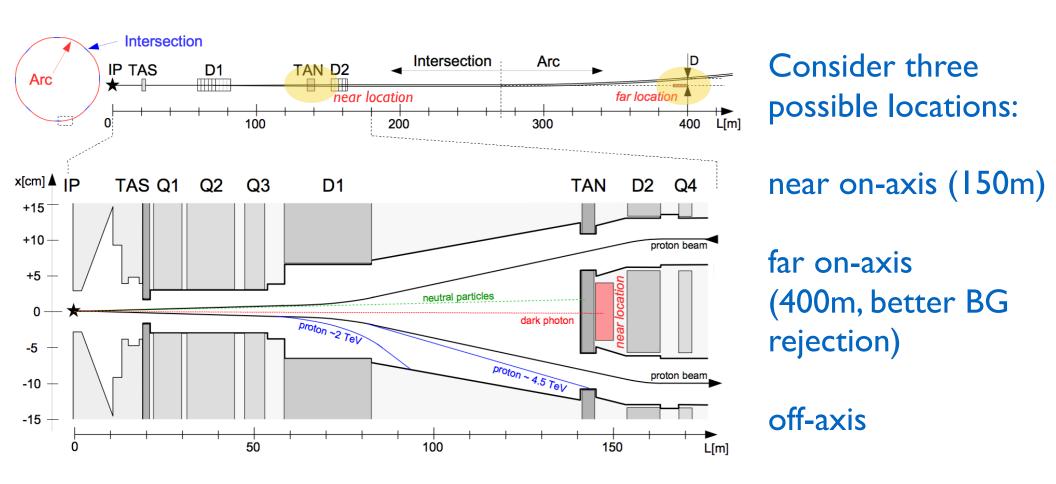
Higgs-portal LLP produced in B-decays

LLPs produced in Higgs decays

CODEX-b is much smaller than MATHUSLA and LHCb has lower lumithan ATLAS/CMS collision point, but highly complementary.

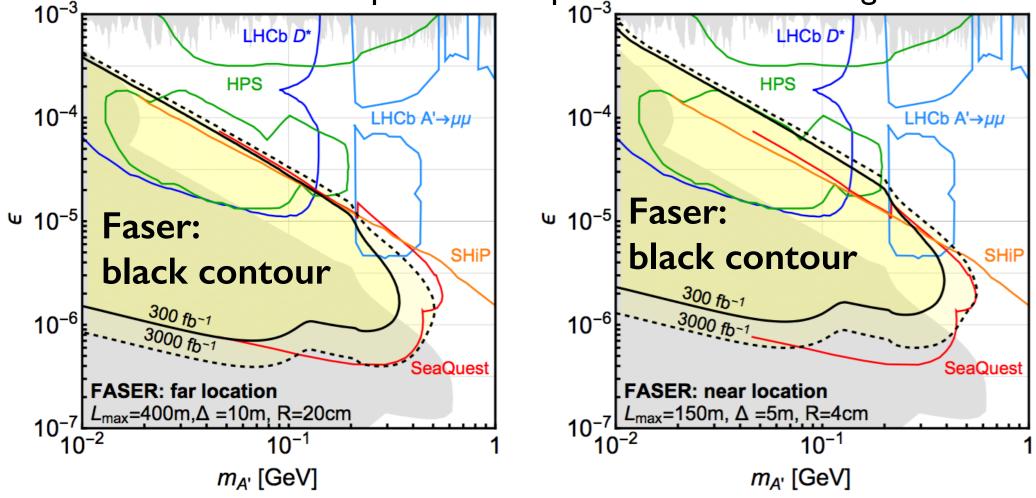
- → at long lifetimes, only 1/200 the LLP xsec sensitivity (1/50 if fry VELO)
- → probably cheaper
- → could afford more granular instrumentation
 - ⇒ might have advantage in reconstructing very light LLPs < ~GeV?

*ForwArd Search ExpeRiment


FASER

Exploiting forward LLP production at the LHC

FASER


Exploit extremely high rates of forward proton inelastic scattering (~10¹⁷) in HL-LHC collisions to produce light LLPs.

Small cylindrical detector $r \sim 0.1 \text{m}$, $L \sim 5-10 \text{m}$, with modest 0.1T B field to split final states of LLP decay.

FASER Sensitivity @ (HL-) LHC

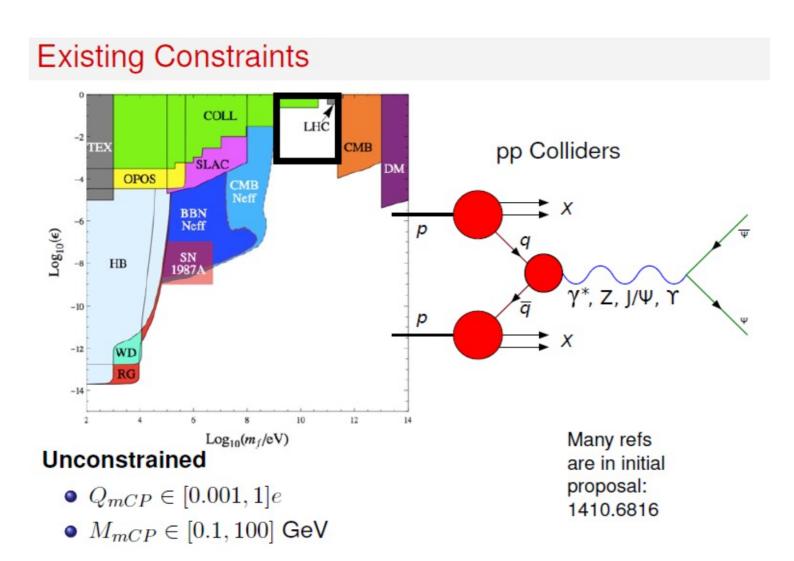
Dark Photons produced in proton bremsstrahlung

Very similar to proposed fixed-target experiments like SeaQuest

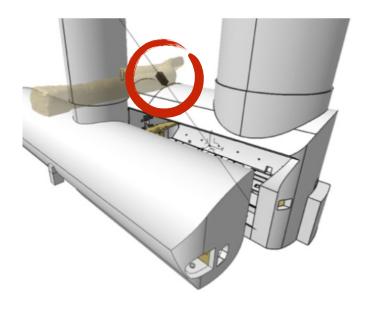
Is FASER cheaper/better than e.g. SeaQuest in some way? SHiP is the light-LLP super power...

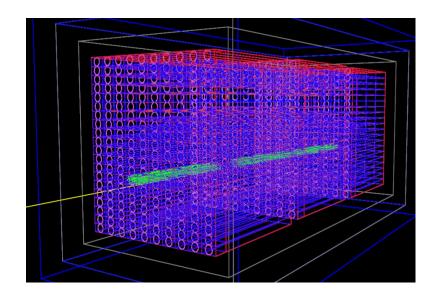
FASER Sensitivity @ (HL-) LHC

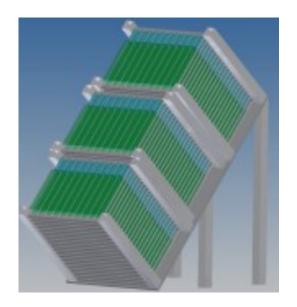
Dark Photons produced in proton bremsstrahlung 10^{-3} BaBar, NA48/2, PHEN BaBar, NA48/2, PHENIX 10^{-4} 10^{-4} LHCb A'→µµ LHCb A'→µµ SHIP, SHiP, bremsstrahlung bremsstrahlung $\Psi 10^{-5}$ Orsay, U70 ₩ 10⁻⁵ Orsay, U70 SHiP, 300 fb-1 300 fb-1 10^{-6} 3000 fb-1 96P Charm, Nu-Cal Charm, Nu-Cal Sea Quest **FASER:** far location **FASER:** near location $_{\text{max}}$ =150m, Δ =5m, R=4cm $_{\text{max}}$ =400m, Δ =10m, R=20cm E137, LSND m_{A'} [GeV E137, LSND $m_{A'}$ [GeV SHiP, SHIP, 1504.04855 SN SN mesons mesons


milliQan

The only game in town for weak-scale millicharges

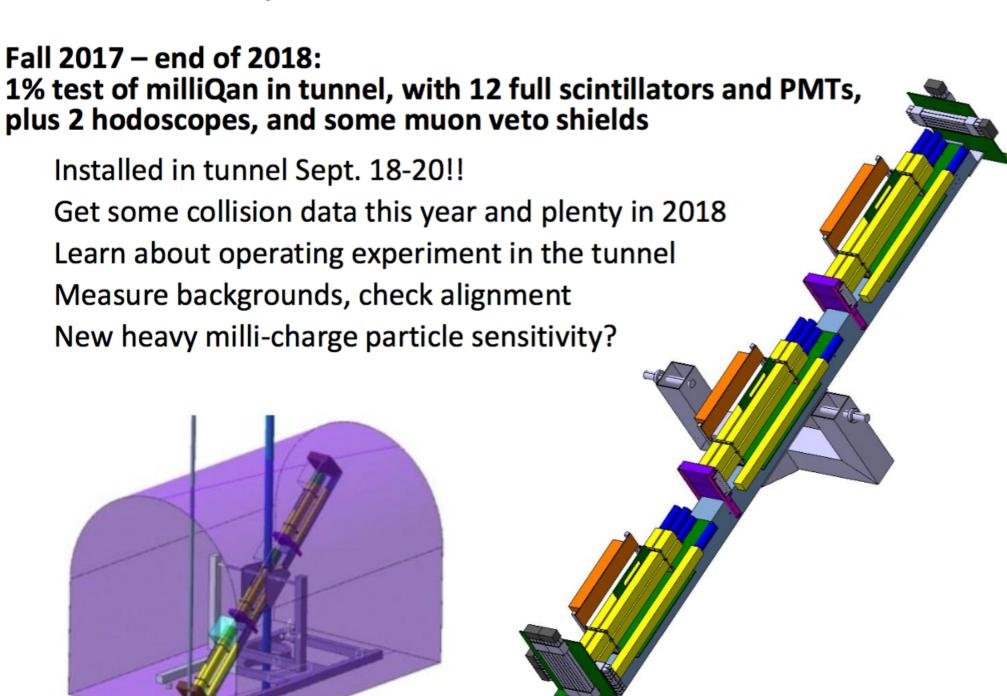

1410.6816 Haas, Hill, Izaguirre, Yavin 1506.04760 Izaguirre, Yavin Letter of Intent: 1607.04669


Milli-charged Particles


If the Hidden Sector includes an unbroken U(1), kinetic mixing gives new states a $U(1)_{EM}$ milli-charge!

MilliQan

An Expression of Interest to Install a Milli-charged Particle Detector at LHC P5


Austin Ball, Jim Brooke, Claudio Campagnari, Albert De Roeck, Brian Francis, Martin Gastal, Frank Golf, Joel Goldstein, Andy Haas, Christopher S. Hill, Eder Izaguirre, Benjamin Kaplan, Gabriel Magill, Bennett Marsh, David Miller, Theo Prins, Harry Shakeshaft, David Stuart, Max Swiatlowski, and Itay Yavin, 6

Latest schedule for ENGINEERING RUN 2017:

Summer (TS1)- install support structure, cables, services, etc. in tunnel Fall (TS2) - install 12 PMTs/scintillators, electronics, perform calibrations Take data with beam through the end of 2017, and in 2018!

Install full detector in 2018-20 in time for Run3 (300/fb).

Next step: mini-milliQan demonstrator test

1% milliQan

Current Prototype

Specifications

Location: LHC mCP distributions

Bar #: 2 x 2 x 3

Bar dim: 80cm x 5cm x 5cm

2nd layer offset: None

Inter-Scintillator Space: 1cm

Backgrounds: Same * 1%

Shield: 1mm G4_AIR, 1mm

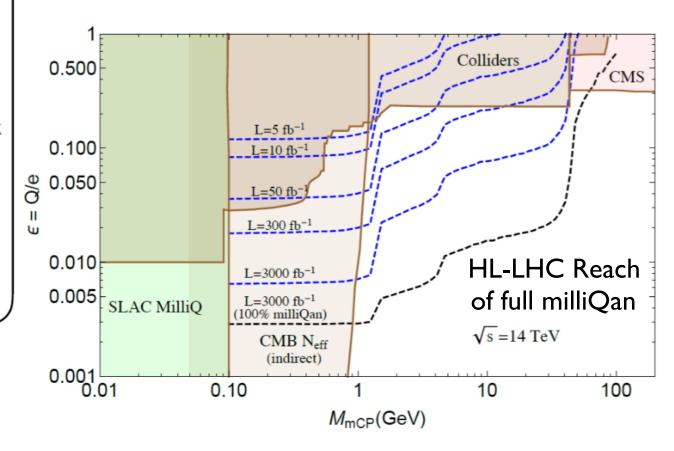
G4 AIR

Reflectivity/Wrapping: 0.99/tyvek

Scintillator: BC-408

PMT: R329-02

Lumi: 5,10, 50, 300, 3000/fb


Backgrounds: 1, 1, 1, 3, 5

Coincidence Threshold: 15ns

Dark-Current Rate: 700

Strategy: Back-to-Back

95%CL Projected Sensitivities

1% milliQan

Current Prototype

Specifications

Location: LHC mCP distributions

Bar #: 2 x 2 x 3

Bar dim: 80cm x 5cm x 5cm

2nd layer offset: None

Inter-Scintillator Space: 1cm

Backgrounds: Same * 1%

Shield: 1mm G4_AIR, 1mm

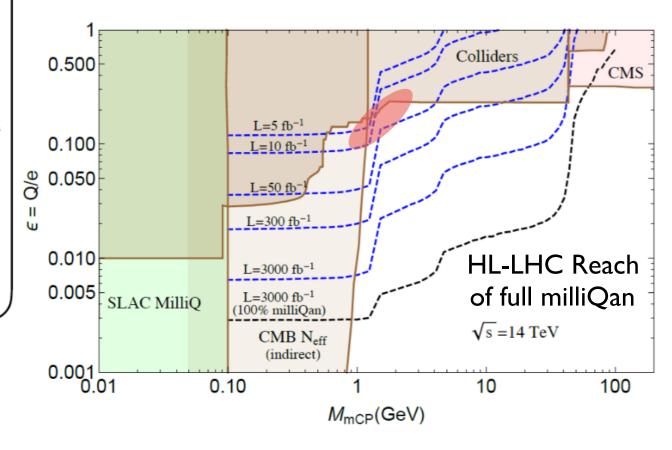
G4 AIR

Reflectivity/Wrapping: 0.99/tyvek

Scintillator: BC-408

PMT: R329-02

Lumi: 5,10, 50, 300, 3000/fb


Backgrounds: 1, 1, 1, 3, 5

Coincidence Threshold: 15ns

Dark-Current Rate: 700

Strategy: Back-to-Back

95%CL Projected Sensitivities

Landscape of HE/HL-LHC Proposals

Landscape of HE/HL-LHC Proposals

These proposals are *relatively* low-cost (1-10s of million \$) and go after LLP signals that the collider may already produce, but the main detectors can't catch! Should really have these at any pp collider!!

MATHUSLA is the largest, most sensitive general-purpose LLP detector. Gain of 10³! Instrumentation for the ~10⁶ m³ volume not finalized. Can << ~GeV LLPs be reconstructed? If yes, compete w/ SHiP @ low mass!

CODEX-b is smaller and may be cheaper. Finer instrumentation could complement MATHUSLA, in particular for lower-mass LLPs.

FASER goes after similar physics, but in spirit is more analogous to low-E or fixed-target experiments. Questions: Can it be cheaper/better than SeaQuest? SHiP is ~1/4 billion \$. Could FASER do better with more \$?

milliQan goes after a different but very generic hidden sector signal. Sensitivity beyond $\epsilon \sim 10^{-3}$ needs scintillator R&D (1/10), 100x more money and space (1/10). Beyond: electron-recoil DM detector near IP!