HEAVY FLAVOUR SPECTROSCOPY

Marco Pappagallo University of Edinburgh

On behalf of LHCb Collaboration

Workshop on the physics of HL-LHC, and perspectives at HE-LHC 30 October-1 November, CERN

HL-LHC/HE-LHC Workshop

SPECTROSCOPY AT LHCb

Exotic candidates have been already observed? Many other? Are they really exotic states? Which kind?

SPECTROSCOPY AT LHCb

Exotic candidates have been already observed? Many other? Are they really exotic states? Which kind?

UPGRADE II IN A NUTSHELL

An Upgrade II will be installed in Long Shutdown 4 of the LHC:
➤ It will consist of redesigned subsystems that can operate at a luminosity of 1-2 x 10³⁴ cm⁻² s⁻¹ (10 x larger than Upgrade I)

- ➢ It is expected that the experiment collects data corresponding to an integrated luminosity of > 300 fb⁻¹
- > Extension of the experiment's capabilities into selecting π^0 , η , γ and low-momentum tracks [CERN-LHCC-2017-003]

Rule of Thumb

"Scale present Run-1 yields by a factor ~400 for hadronic final states and ~200 for muonic final states"

- ✓ But it assumes states have been already observed in Run I...
- \checkmark Educated guesses on unknown production cross-sections and branching ratios

HOW TO DO SPECTROSCOPY?

- Large cross sections
- X Large combinatorial background
- × Hard to disentangle broad structures
- ✗ Difficult to assess spin
- X Presence of "reflections"/"feed-downs"

Central Exclusive Production (CEP)

X Limited cross sections

b-hadron decays (e.g. $B_s \rightarrow D_s^{**}(\rightarrow D^0K)\pi$)

- ✓ Small background
- ✓ Access to the phase of the amplitude and spin-parity
- X Limited cross sections
- X High spin resonances suppressed
- **X** Presence of "shadows"

HL-LHC/HE-LHC Workshop

DOUBLY HEAVY BARYONS

All the ground states with the charm quantum number C = 0 or C = 1 have been discovered. Three weakly decaying C = 2 states are expected: a Ξ_{cc} isodoublet (ccu; ccd) and an Ω_{cc} isosinglet (ccs), each with $J^{P} = 1/2^{+}$. Ξ_{cc}^{++} recently observed by LHCb!

$$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+, \ \Lambda_c^+ \to p K^- \pi^+$$

Highly significant signal observed (>12 σ) consistent with a state decaying weakly

 $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72 \text{ (stat)} \pm 0.27 \text{ (syst)} \pm 0.14 \text{ (}\Lambda_{c}^{+}\text{) MeV}$

- ▷ Observations of Ξ_{cc}^{+} and Ω_{cc}^{-} expected with RUN II data or during the upcoming upgrade
- ➤ The Phase II upgrade will be useful into studying their production and excited spectra: Ξ^{**}_{cc} and Ω^{**}_{cc} . Ω_{ccc} is also likely to be observed

HL-LHC/HE-LHC Workshop

WHAT ABOUT Ξ_{bc} ? \succ The B_c meson was discovered almost two decades ago In LHCb, ~5000 B_c \rightarrow J/ $\psi \pi$ in Run I So, why have we not yet seen bcq baryons $(\Xi_{\rm bc})$? Lower production rates, guess $\sigma(X_{\rm bc}) \sim (0.1 - 0.5) \times \sigma(B_c^+)$ In J/ ψ modes, (usually) get a charm baryon: yield reduced by BF(X_c) × $\varepsilon_{sel}(X_c)$ Shorter lifetime (~0.15 – 0.4 ps range, compared to ~0.5 ps for B_c) $(e.g.) N(\Xi_{bc}^0 \to J/\psi \Lambda_c^+ K^-; \operatorname{Run1}) = N(B_c^+ \to J/\psi D_s^{(*)+}; \operatorname{Run1})$ $\times \frac{\sigma(pp \to \Xi_{bc}X)}{\sigma(pp \to B_c^+X)} \times f_{\Xi_{bc} \to \Xi_{bc}^0}$ $\times \frac{Br(\Xi_{bc}^0 \to J/\psi \Lambda_c^+ K^-)}{Br(B_c^+ \to J/\psi D_s^{(*)+})}$ $\times \epsilon_{K^-}$ $\simeq 3 \,\mathrm{candidates}$ $N(\Xi_{hc}^0 \to J/\psi \Lambda_c^+ K^-; \operatorname{Run} 5) \simeq 6 \times 10^2$ HL-LHC/HE-LHC Workshop M. Pappagallo 8

DOUBLY CHARMED TETRAQUARK: $cc\bar{q}\bar{q}$

[A. Esposito et al.: PRD 88 (2013) 054029]

- Observation of several hadronic resonances with hidden charm or beauty (so called X, Y, Z states) in the last decade at LHC and B-factories
 They harely fit into the standard quarkonium scenarios and "evotic"
- They barely fit into the standard quarkonium scenarios and "exotic" interpretations have been proposed

Tetraquark

Loosely bound molecules

Doubly charmed particles are a straightforward consequence

If discovered, they would be almost full-proof states made of 4 quarks

Observation of doubly charged states would be even more important to understand their nature: indeed in a loosely bound molecule, Coulomb repulsion would induce a fall-apart decay on very short time scales

DOUBLY CHARMED TETRAQUARK: $cc\bar{q}\bar{q}$

[A. Esposito et al.: PRD 88 (2013) 054029]

- ➤ If the masses of such states are below the DD thresholds → strong decays are forbidden and weak decay pattern would be complicated
- > If the masses are above the DD thresholds, pure tetraquark models predict (narrow) states with quantum numbers $J^P = 0^+$, 1^+ and 2^+
- ▶ 0⁺ and 1⁺ states expected to be the lighter and more likely to be formed (and observed)

Natural widths as predicted by a pure tetraquark model

HL-LHC/HE-LHC Workshop

DOUBLY CHARMED TETRAQUARK IN PROMPT PRODUCTION

Narrow states could be easily spotted in the prompt production

Associated production of D^+D^+ and $D^+D_s^+$ (0.3 fb⁻¹)

HL-LHC/HE-LHC Workshop

DOUBLY CHARMED TETRAQUARK IN B_c DECAYS

- ➢ If the states are broad-ish → Search for them in B_c decays where the quantum numbers can be also measured
- > The B_c meson is the lightest state in the standard model that can decay to two same-flavour charmed hadrons.
- ▶ Search for tetraquark: $\mathcal{T}_s^+(cc\bar{u}\bar{s}) \to D^0 D_s^+$

[LHCb: PRD 87 (2013) 112012]

PENTAQUARKS

[LHCb: PRL 115 (2015) 072001]

HL-LHC/HE-LHC Workshop

MULTIPLET OF PENTAQUARKS

As for other hadrons, multiplets of pentaquarks should exist. The two observed P_c^+ should be states with quark content *uudcc̄*. We could look for strange pentaquark $P_{cs}^{0} \rightarrow J/\psi \Lambda$ in Ξ_b decays.

HL-LHC/HE-LHC Workshop

WEAK DECAYS OF EXCITED D_s Mesons

Are they ordinary *cs* or tetraquark/molecules states? Predictions on the natural width vary according to the models

Weak decays not observed for any short-lived resonance.

> Best limits ($O(10^{-6})$) are measured for the J/ ψ meson

> If strong and/or electromagnetic processes are allowed, weak decays are suppressed by the square of the Fermi constant ($< O(10^{-10})$)

$$\Gamma_{(D_s^* \to \ell\nu)} = \frac{G_F^2}{12\pi} |V_{cs}|^2 f_{D_s^*}^2 M_{D_s^*}^3 \left(1 - \frac{m_\ell^2}{M_{D_s^*}^2}\right)^2 \left(1 + \frac{m_\ell^2}{2M_{D_s^*}^2}\right) \quad \text{[PRL 112 (2014) 212002]}$$

Rates enhanced if the total width is suppressed as for the excited D_s states

SEARCH FOR WEAK DECAYS OF EXCITED D_s MESONS AT LHCb

Assuming a production cross-section comparable to that of the D_s meson (500µb at 13 TeV), a branching fraction of 10⁻⁸ and a reconstruction efficiency of 0.1% results in an expected signal of **50 decays** in a 1 fb⁻¹ data sample.

Where to look at?

The search for such decays in prompt production will be affected by large combinatorial background and narrow signals (i.e. small Q value) will give the best sensitivity

$D_{s0}^{*}(2317)/D_{s1}(2460) → ppπ$

Outstanding particle identification performance needed to identify protons with high purity and efficiency

Background reduction

IMPACT OF CALORIMETER UPGRADE

- Increased calorimeter resolution
- Reduction in background by a fast timing calorimeter information
- > Increased sensitivity to low p_T photon and π^0

See Preema Pais's Talk on Wednesday

► Measurement of $B(X(3872) \rightarrow \psi(2S) \gamma)/B(X(3872) \rightarrow J/\psi \gamma)$ [Nucl.Phys.B886 (2014) 665]

 $\frac{BR(X(3872) \to \psi(2S)\gamma)}{BR(X(3872) \to J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29 \quad \Longrightarrow$

Pure molecule scenario disfavored

 Search for pentaquarks decaying to χ_{c1}p where χ_{c1}→J/ψ γ [LHCb: PRL 119 (2017) 062001]

IMPACT OF CALORIMETER UPGRADE

Neutrals will be crucial into probing further the X(3872) meson

IMPACT OF VELO UPGRADE

➢ Better performance into detecting low momentum tracks will contribute into studying/observing excited states decaying through dipion transitions (e.g. B_c* → B_c п п)

- ➢ Better reconstruction efficiency for multibody B decays, such as B→DDK aiming to the search for charmonium-like states
- ➢ Improved vertex resolution → Higher efficiency into selecting short-lived particles: B_c, Ξ_{cc}, Ω_{cc}, Ξ_{bc}, Ω_{ccc}

SUMMARY

- Great interest into spectroscopy
- > The observation of the two pentaquarks is the most cited LHCb paper
- The large data set collected in the HL-LHC era, together with an upgraded detector, will boost sensitivity in searches for heavy states with small production cross sections and/or small decay rates

