CernOct17

XYZ EXOTIC RESONANCES AT THE LHC

AD POLOSA (SAPIENZA UNIVERSITY)

X(3872)

2003 BELLE

$$B^+ \longrightarrow k^+ \chi /3872)$$

$$\longrightarrow J/4 \pi^+ \pi^-$$

QUANTUM NUMBERS: 1++

- LATER OBSERVED ALSO IN J/4 W

WHAT IS THE ORIGIN OF THIS ISOSPIN VIOLATION?

--- A REMARKABLE EXAMPLE OF FINE TOWN 9 $M(\times (3872)) \simeq M(D^{\circ}) + M(\bar{D}^{*\circ})$ $\simeq M(J/4) + M(e)$

CONFIRMED BY BABAR, COF, DO, CMS, ATLAS, BES

X(3872) AS A MOLECULE

ATTRACTION inthe I = 0, DD CHANNEL due to π - exchange forces (repulsion in I=4!) X ~ A LOOSELY BOUND 'DEUSON' (Toinguist)

FOR A PURE I = 0 STATE

$$\frac{\cancel{X} + \cancel{Y} + \cancel{Y}$$

BUT, SINCE DO DYO IS LIGHTER THAN D+D+- BY ~ 8MeV, the neutral component less ligher weight: <>>> -This brings in I = 1 too. FINE!

> "CHARGED MOLECULES WILL NOT BE OBSERVED" (2004)

FOR AN EARLY ACCOUNT ON MOLECULAR CHARMONNM
DE RUJULA, GEORGI, GLASHOW PRL 38 (1977)317

CHARGED STATES

DURING THE LAST FEW YEARS THE FOLLOWING CHARGED IT - STATES HAVE BEEN DISCOVERED

$$Z_{c}^{\pm,0}(3900), Z_{c}^{\pm,0}(4020), Z_{b}^{\pm,0}(10610), Z_{b}^{\pm,0}(10650)$$

WITH MASS VALUES ABOVE THE CORRESPONDING MESON-MESON THRESHOLDS:

$$\delta = +7.8 + 6.7 + 2.7 + 1.8 \text{ MeV}$$
 $5^{\circ} D^{*+} 5^{\circ} D^{*+} 5^{\circ} D^{*+} 5^{\circ} B^{*+} 5^{\circ} B^{*+}$

- MOLECULES EVEN IN I = 1 REPULSIVE CHANNELS?
- MOLECULES EVEN IF 8>0?!
 - · Data analyses are wrong: f<0 ...
 - way out. These states do not exist, they ore coses!
 - · lattice does not leave thex states (C. Thomas

WHAT ABOUT THE Z14430) OBSERVED BY BETWEE LHC6?

State	M, MeV	Γ, MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.69 ± 0.17	< 1.2	1++	$B o K(\pi^+\pi^-J/\psi)$	Belle [1, 93] (>10),	2003	Ok
					BaBar [94] (8.6)		
				$p\bar{p} \rightarrow (\pi^+\pi^-J/\psi) \dots$	CDF [95, 96, 97] (11.6),	2003	Ok
					D0 [98] (5.2)		
				$pp \to (\pi^+\pi^-J/\psi) \dots$	LHCb [99, 100, 101] (np),	2012	Ok
					CMS [102] (np)		
				$Y(4260) \rightarrow \gamma \left(\pi^{+}\pi^{-}J/\psi\right)$	BESIII [103] (6.3)	2013	NC!
				$B o K(\omega J/\psi)$	Belle [104] (4.3), BaBar [105] (4.0)	2005	NC!
				$B o K(\gamma J/\psi)$	Belle [104, 106] (5.5),	2005	Ok
					BaBar [107, 108] (3.6),		
					LHCb [109] (> 10)		
				$B \to K(\gamma \psi(2S))$	BaBar [108] (3.5), Belle [106] (0.2),	2008	NC!
					LHCb [109] (4.4)		
				$B o K(D^0 \bar{D}^{*0})$	Belle [110, 111] (6.4),	2006	NC!
					BaBar [112] (4.9)		
$Z_c(3900)^+$	3891.2 ± 3.3	40 ± 8	1+-	$Y(4260) \to \pi^{-}(\pi^{+}J/\psi)$	BESIII [113] (>8), Belle [114] (5.2),	2013	Ok
,					CLEO data [115] (>5)		
				$Y(4260, 4360) \rightarrow \pi^0(\pi^0 J/\psi)$	CLEO data [115] (3.5),	2013	Ok
					BESIII [116] (10.4)		
				$Y(4260, 4390) \rightarrow \pi^{-}(\pi^{+}h_{c})$	BESIII [117] (2.1)	2013	NC!
				$Y(4260) \to \pi^{-}(D\bar{D}^{*})^{+}$	BESIII [118, 119] (18)	2013	Ok
				$Y(4260) \to \pi^0 (D\bar{D}^*)^0$	BESIII [120] (>10)	2015	Ok
$Z_c(4020)^+$	4022.9 ± 2.8	7.9 ± 3.7	??-	$Y(4260, 4390) \rightarrow \pi^{-}(\pi^{+}h_{c})$	BESIII [117] (8.9)	2013	NC!
				$Y(4260, 4390) \rightarrow \pi^0(\pi^0 h_c)$	BESIII [121] (>5)	2014	NC!
				$Y(4260) \to \pi^-(D^*\bar{D}^*)^+$	BESIII [122] (10)	2013	NC!
				$Y(4260) \to \pi^0 (D^* \bar{D}^*)^0$	BESIII [123] (5.9)	2015	NC!
$Z_b(10610)^+$	10607.2 ± 2.0	18.4 ± 2.4	1+-	$\Upsilon(10860) \to \pi^{-}(\pi^{+}\Upsilon(1S, 2S, 3S))$	Belle [124, 125, 126] (>10)	2011	Ok
				$\Upsilon(10860) \rightarrow \pi^0(\pi^0\Upsilon(2S,3S))$	Belle [127] (6.5)	2013	NC!
				$\Upsilon(10860) \to \pi^-(\pi^+ h_b(1P, 2P))$	Belle [124, 125] (16)	2011	Ok
				$\Upsilon(10860) ightarrow \pi^-(Bar{B}^*)^+$	Belle [128, 129] (9.3)	2012	NC!
$Z_b(10650)^+$	10652.2 ± 1.5	11.5 ± 2.2	1+-	$\Upsilon(10860) \to \pi^{-}(\pi^{+}\Upsilon(1S, 2S, 3S))$	Belle [124, 125, 126] (>10)	2011	Ok
				$\Upsilon(10860) \to \pi^-(\pi^+ h_b(1P, 2P))$	Belle [124, 125] (16)	2011	Ok
				$\Upsilon(11020) \to \pi^-(\pi^+ h_b(1P))$	Belle [130] (3.3)	2015	NC!
				$\Upsilon(10860) \to \pi^- (B^* \bar{B}^*)^+$	Belle [128, 129] (8.1)	2012	NC!

State	M, MeV	Γ, MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
$\psi(3770)$	3773.13 ± 0.35	27.2 ± 1.0	1	$e^+e^- \rightarrow (D\bar{D})$	PDG [131]	1977	Ok
				$B \to K(D\bar{D})$	Belle [132, 133] (5.5), BaBar [112] (6.4)	2003	Ok
				$e^+e^- \rightarrow (\pi^+\pi^-J/\psi)$	BES [134] (3), CLEO [135] (11.6)	2003	Ok
				$e^+e^- ightarrow (\pi^0\pi^0 J/\psi)$	CLEO [135] (3.4)	2005	NC!
				$e^+e^- \rightarrow (\eta J/\psi)$	CLEO [135] (3.5)	2005	NC!
				$e^+e^- o (\phi\eta)$	CLEO [136] (5)	2005	NC!
				$e^+e^- o (\gamma \chi_{c0,1})$	PDG [131]	2005	Ok
$\psi_2(3823)$	3822.2 ± 1.2	< 16	2	$B \rightarrow K(\gamma \chi_{c1})$	Belle [137] (3.8)	2013	NC!
or X(3823)				$e^+e^- ightarrow \pi^+\pi^-(\gamma\chi_{c1})$	BESIII [138] (6.2)	2015	NC!
X(3915)	3918.4 ± 1.9	20 ± 5	0/2?+	$B \rightarrow K(\omega J/\psi)$	Belle [139] (8), BaBar [140, 105] (19)	2004	Ok
or Y(3940)				$e^+e^- \rightarrow e^+e^-(\omega J/\psi)$	Belle [141] (7.7), BaBar [142] (7.6)	2009	Ok
$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2++	$e^+e^- \rightarrow e^+e^-(D\bar{D})$	Belle [143] (5.3), BaBar [144] (5.8)	2005	Ok
X(3940)	3942 ⁺⁹ ₋₈	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi (D\bar{D}^*)$	Belle [145, 146] (6)	2005	NC!
$\psi(4040)$	4039 ± 1	80 ± 10	1	$e^+e^- \rightarrow (\text{hadrons})$	PDG [131]	1978	Ok
				$e^+e^- o (\eta J/\psi)$	BESIII [147] (>10), Belle [148] (6.0)	2012	NC!
$Z(4050)^{+}$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle [149] (5.0), BaBar [150] (1.1)	2008	NC!
$Z(4055)^{+}$	4054 ± 3.2	45 ± 13	??-	$Y(4360) \rightarrow \pi^{-}(\pi^{+}\psi(2S))$	Belle [151] (3.5)	2014	NC!
X(4140)	$4146.5^{+6.4}_{-5.3}$	83^{+30}_{-25}	1++	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [152, 153] (5.0), Belle [154] (1.9),	2009	Ok
or Y(4140)	-0.0	-20		. , , ,	LHCb [155] (1.4), CMS [156] (>5),		
					D0 [157] (3.1), BaBar [158] (1.6),		
					LHCb [159, 160] (8.4)		
				$p\bar{p} \rightarrow (\phi J/\psi) \dots$	D0 [161] (4.7)	2015	NC!
$\psi(4160)$	4153 ± 3	103 ± 8	1	$e^+e^- \rightarrow (hadrons)$	PDG [131]	1978	Ok
, ,				$e^+e^- ightarrow (\eta J/\psi)$	Belle [148] (6.5), BESIII [162] (>5)	2013	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi (D^*\bar{D}^*)$	Belle [146] (5.5)	2007	NC!
$Z(4200)^{+}$	4196_{-32}^{+35}	370_{-149}^{+99}	1+-	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle [163] (6.2)	2014	NC!
$Z(4250)^{+}$	4248^{+185}_{-45}	177^{+321}_{-72}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle [149] (5.0), BaBar [150] (2.0)	2008	NC!
Y(4260)	4221.1 ± 2.5		1		BaBar [164, 165] (8), CLEO [166, 167] (11),		Ok
(Belle [168, 114] (15), BESIII [113, 169] (np)		
				$e^+e^- ightarrow (\pi^0\pi^0 J/\psi)$	CLEO [166] (5.1), BESIII [116] (np)	2006	Ok
				$e^+e^- \rightarrow (K^+K^-J/\psi)$	CLEO [166] (3.7)	2006	NC!
				$e^+e^- \to (f_0(980)J/\psi)$	BaBar [165] (np), Belle [114] (np)	2012	Ok
				$e^+e^- \rightarrow (\pi^+\pi^-h_c)$	BESIII [117, 170] (10)	2013	NC!
				$e^+e^- \rightarrow (\pi^0\pi^0h_c)$	BESIII [121] (np)	2014	NC!
				$e^+e^- \rightarrow (\omega \chi_{c0})$	BESIII [171] (>9)	2014	NC!
				$e^+e^- \rightarrow (\gamma X(3872))$	BESIII [103] (6.3)	2013	NC!
				$e^+e^- \to (\pi^- Z_c(3900)^+)$	BESIII [113, 119] (>8), Belle [114] (5.2)	2013	Ok
				$e^+e^- \to (\pi^0 Z_c(3900)^0)$	BESIII [116, 120] (10.4)	2015	Ok
				$e^+e^- \rightarrow (\pi^{\mp,0}Z_c(4020)^{\pm,0})$		2013	Ok
X(4274)	$4273.3_{-9.0}^{+19.1}$	$56.2^{+13.8}_{-15.6}$	1++	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [153] (3.1), LHCb [155] (1.0),	2011	NC!
or Y(4274)	-9.0	-15.6		(7-7-7)	CMS [156] (>3), D0 [157] (np),		
(,					LHCb [159, 160] (6.0)		
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	0/2?+	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [172] (3.2)	2009	NC!
Y(4360)	4341.2 ± 5.4	10_{-10} 101.9 ± 9.3		$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [173, 151] (8), BaBar [174] (np)	2007	Ok
- (2000)	101112 1 011	101.0 1 0.0	-	$e^+e^- \rightarrow (\pi^+\pi^-J/\psi)$	BESIII [169] (7.6)	2016	NC!
				$e^+e^- \to (\pi^+\pi^-\psi_2(3823))$	BESIII [138] (np)	2015	NC!
				$e^+e^- \to (\pi^0 Z_c(3900)^0)$	BESIII [116] (np)	2015	NC!
				$e^+e^- \to (\pi^- Z_c(4055)^+)$	Belle [151] (3.5)	2014	NC!
				C E -7 (N Z/c(4000) ·)	Dette [101] (0.0)	2014	1101

State	M, MeV	Γ, MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
Y(4390)	4391.6 ± 6.4	139.5 ± 16.1	1	$e^+e^- \rightarrow (\pi^+\pi^-h_c)$	BESIII [170] (10)	2016	NC!
				$e^+e^- o (\pi^{\mp,0}Z_c(4020)^{\pm,0})$	BESIII [117, 121] (np)	2013	NC!
$\psi(4415)$	4421 ± 4	62 ± 20	1	$e^+e^- \rightarrow ({\rm hadrons})$	PDG [131]	1976	Ok
				$e^+e^- o (\eta J/\psi)$	Belle [148] (np), BESIII [162] (>5)	2013	NC!
				$e^+e^- o (\omega\chi_{c2})$	BESIII [175] (10.4)	2015	NC!
				$e^+e^- \to (D\bar{D}_2^*(2460))$	Belle [176] (10)	2007	NC!
$Z(4430)^{+}$	4478^{+15}_{-18}	181 ± 31	1+-	$\bar{B}^0 \to K^-(\pi^+\psi(2S))$	Belle [177, 178, 179] (6.4),	2007	Ok
					BaBar [180] (2.4), LHCb [181, 182] (13.9)		
				$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle [163] (4.0)	2014	NC!
X(4500)	4506^{+16}_{-19}	92^{+30}_{-29}	0++	$B^+ \to K^+(\phi J/\psi)$	LHCb [159, 160] (6.1)	2016	NC!
Y(4660)	4643 ± 9	72 ± 11	1	$e^{+}e^{-} \rightarrow (\pi^{+}\pi^{-}\psi(2S))$	Belle [173, 151] (5.8), BaBar [174] (5)	2007	Ok
				$e^+e^- o (\Lambda_c^+ \bar{\Lambda}_c^-)$	Belle [183] (8.2)	2007	NC!
X(4700)	4704_{-26}^{+17}	120^{+52}_{-45}	0++	$B^+ \to K^+(\phi J/\psi)$	LHCb [159, 160] (5.6)	2016	NC!
$\Upsilon(4S)$	10579.4 ± 1.2	20.5 ± 2.5	1	$e^+e^- \rightarrow (\text{hadrons})$	PDG [131]	1985	Ok
				$e^+e^- ightarrow (\pi^+\pi^- \Upsilon(1S,2S))$	BaBar [184, 185] (>10),	2006	Ok
					Belle [186, 187] (11.2)		
				$e^+e^- o (\eta \Upsilon(1S))$	BaBar [185] (>11)	2008	Ok
				$e^+e^- \rightarrow (\eta h_b(1P))$	Belle [64] (11)	2015	Ok
$\Upsilon(10860)$	10891 ± 4	54 ± 7	1	$e^+e^- \rightarrow (\text{hadrons})$	PDG [131]	1985	Ok
				$e^{+}e^{-} \rightarrow (\pi^{+}\pi^{-} \Upsilon(1S, 2S, 3S))$	Belle [188, 125, 126] (>10)	2007	Ok
				$e^+e^- \to (\pi^0\pi^0 \Upsilon(1S, 2S, 3S))$	Belle [127] (np)	2013	Ok
				$e^+e^- \to (f_0(980) \Upsilon(1S))$	Belle [125, 127, 126] (>8)	2011	Ok
				$e^+e^- \to (f_2(1275) \Upsilon(1S))$	Belle [125, 127, 126] (np)	2011	NC!
				$e^+e^- \rightarrow (\eta \Upsilon(1S, 2S))$	Belle [189] (10)	2012	NC!
				$e^+e^- o (K^+K^- \Upsilon(1S))$	Belle [188] (4.9)	2007	NC!
				$e^{+}e^{-} \to (\omega \chi_{b1,2}(1P))$	Belle [190] (12)	2014	Ok
				$e^+e^- \to ((\pi^+\pi^-\pi^0)_{\text{non-}\omega} \chi_{b1,2}(1P))$	Belle [190] (4.9)	2014	NC!
				$e^+e^- o (\pi^+\pi^- \Upsilon_J(1D))$	Belle [189] (9)	2012	NC!
				$e^+e^- o (\eta \varUpsilon_J(1D))$	Belle [191] (np)	2014	NC!
				$e^+e^- \to (\pi Z_b(10610, 10650))$	Belle [125, 127] (>10)	2011	Ok
				$e^+e^- o (B_s^* \bar B_s^*)$	Belle [192] (np)	2016	NC!
$\Upsilon(11020)$	$10987.5^{+11.0}_{-3.4}$	61^{+9}_{-28}	1	$e^+e^- \rightarrow (\text{hadrons})$	PDG [131]	1985	Ok
				$e^{+}e^{-} \rightarrow (\pi^{+}\pi^{-} \Upsilon(1S, 2S, 3S))$	Belle [193] (np)	2015	NC!
				$e^+e^- o (\pi^\mp Z_b(10610, 10650)^\pm)$	Belle [130] (5.3)	2015	NC!

- IF Zob STATES ARE THERE, IT IS DIFFICULT
 TO ACCEPT THEM AS MOLECULES
- WHAT IS THE Z*(4430) ?
- _ CAN WE RISE SOME DOUBTS ON THE

 MOLECULAR NATURE OF X (3872)?

FOR A REVIEW SEE ESPOSITO, PILLONI, P. PLYS. Rept. 668 (2017)

ALI, LANG, STONE 1706.00 610

LEBED, MITCHELL, SWANSON 1610.04528

X(3872)

A D°(0-) D*°(1-) MOLECULE?

Suppose there is some V(r) between 0° & 000

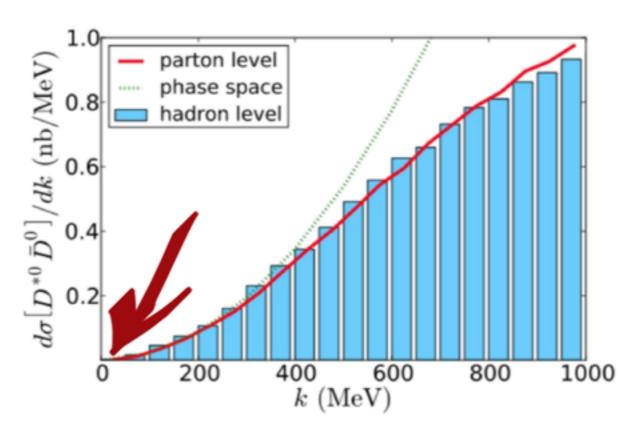
$$V(r) = -g \frac{e^{-r/n_0}}{r}$$
 with $r_0 \sim \frac{r}{m_{\pi}}$

The VIRIAL THEOREM gives

$$2\langle T\rangle = \langle \sum_{i=1}^{3} \pi_i \partial_i V \rangle = \langle r_{\frac{3}{2r}} V(r) \rangle$$

i.e.

$$= -\frac{\langle p^2 \rangle}{2m} + \frac{g}{76} esq \left(-\frac{\langle r \rangle}{2}\right)$$

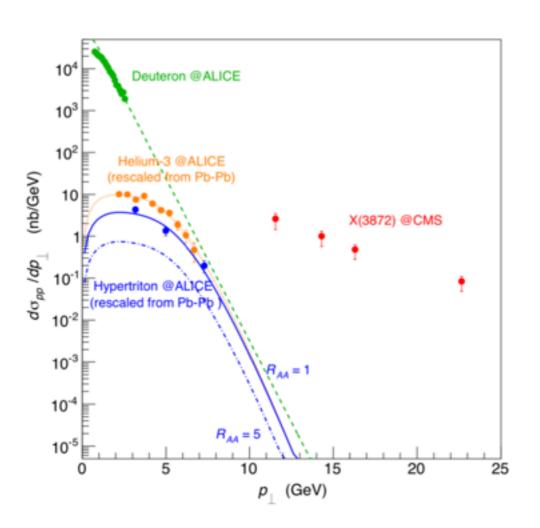

T T E

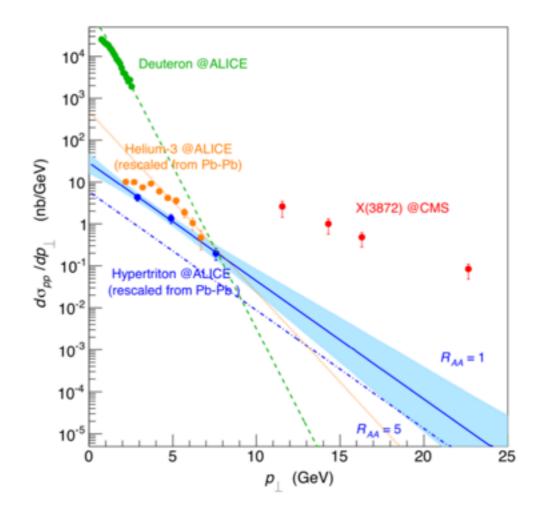
FOR SHALLOW BOUND STATES

$$\langle r \rangle \approx \frac{1}{\sqrt{2m|E|}} \approx 10 \, fm \%$$

then from vivial: \(\p^2\rangle \approx 2m |E| \approx 20MeV

PRODUCTION AT HADRON COLLIDERS




Pr(Dro Do) > 5 geV and 14(000 Do) / <0.6 in pp@ 1.96 TeV

PROM ARTOISENET & BRAATEN PRD 81 (2010) 014013

SAME RESULTS FOUND BY BIGNAMINI & AL. PRL 103 (2009) 162001

X PRODUCTION AT HADRON COLLIDERS

THEX PRODUCTION DOES NOT SEEM COMPARABLE TO THAT OF REAL HADRON MOVECULES, (What about offer states in 19?)

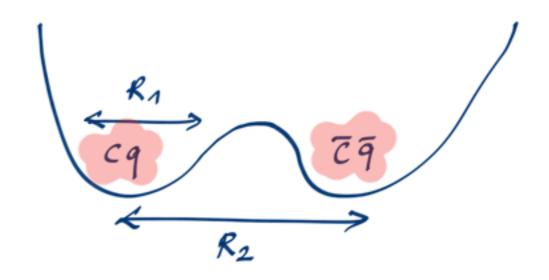
[FROM ESPOSITO & AL. PRD 92 (2015)]

NEUTRAL AND CHARGED STATES GN SIMLPY BE [Qq] [Qq]

DIQUARK-ANTIDIQUARK COMPOSITE STATES

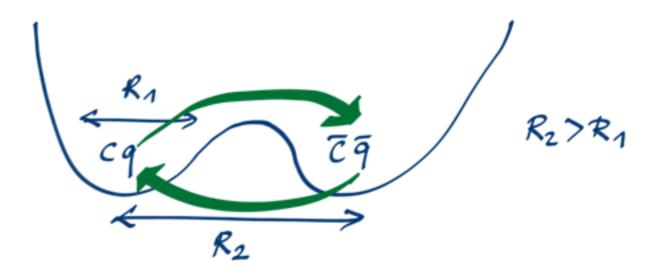
WOULD EXPLAIN NATURALLY THE EXISTENCE OF CHARGED STATES AND THEIR DECAYS, R.g. Z+ -> J/4 T+

- WHY χ^{\pm} (3872) STATES ARE ABJENT)


- HOW TO EXPLAIN THE ISOSPIN VIOLATION PATTERN?

WHY ARE STATES CLOSE TO MESON - MESON THRESHOLDS?

- MY B(x→40) «B(x→ Do Dro)?


PROBLEMS:

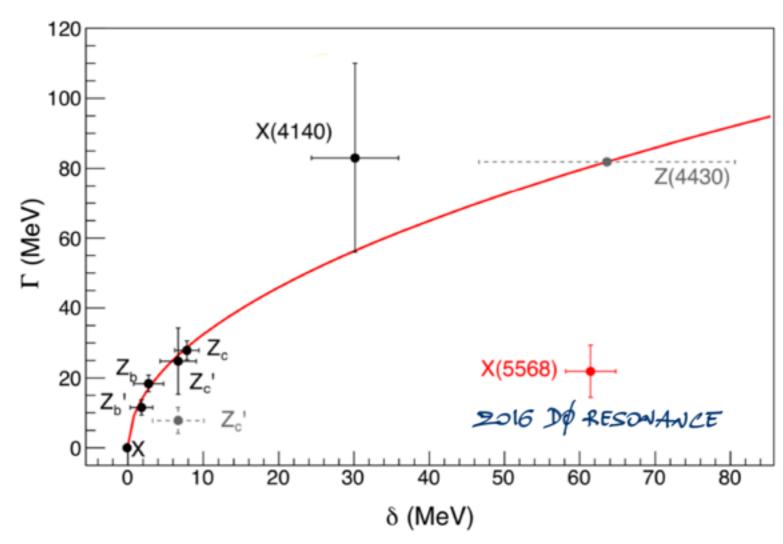
DIQUARK-ANTINIQUARK STATES

$$\lambda = R_2/R_1 > 1$$

DIQUARK-ANTINIQUARK STATES

THE TUNNELING OF THE HEAVY QUARK IS exp (- \(\sqrt{2Ma} \)

WRT THE TUNNELINGOF THE LIGHT QUARK. This would explain why


B(x+0°0,0)>B(x+7/40)

ALSO DIQUARK TOGJZ ARE LESS BOWN THAN (CA), SO WE CAN EXPECT THAT

M(Teg) = Teg) 2 M ((cg) (Eg))

LIFETIME

INDEED THE TOTAL WIDTH OF X, Z, Z, STATES APPEARS
TO BE DOMINATED BY THEIR DECAYS INTO CLOSE MESON-HETON
THRESHOLDS

[ESPOSITO & AL. PLB 758 (2016) 292

$$A = (10.3 \pm 1.3) \text{MeV}^{1/2} \quad \chi^{2}/_{20F} = 1.2/_{5}$$

TETRAQUARK STATES

 $H \approx 2 K \left(\vec{S}_{\hat{q}} \cdot \vec{S}_{\hat{q}} + \vec{S}_{\hat{q}} \cdot \vec{S}_{\hat{a}} \right)$

SPECTRUM

$$\frac{0^{++}}{-} + K \qquad \frac{1^{+-}}{-} + K \qquad \frac{2^{++}}{-} + K$$

$$\frac{1^{++}}{-} - K$$

TETRAQUARK STATES

$$H \approx 2 K \left(\vec{S}_{q} \cdot \vec{S}_{q} + \vec{S}_{\bar{q}} \cdot \vec{S}_{\bar{q}} \right)$$

SPECTRUM

$$\frac{O^{++}}{-} + K \qquad \frac{1^{+-}}{-} + K \qquad \frac{2^{++}}{-} + K$$

$$\frac{1^{++}}{X(3872)} \qquad \frac{1^{+-}}{Z_c(3990)}$$

TUNNELING

- 1. FIERZ COLOR 40 ~ (CM II 14) (E14) MK)
- 2. FIERZ SPIN & TUNNEL YHOX, X+Y.

$$X_{4} = \underbrace{\text{Teu}_{0}\text{teu}_{1} + \text{teu}_{1}\text{teu}_{0}}_{\sqrt{2}}$$

$$\times_{4} \sim \frac{A}{\sqrt{2}} \left(\mathcal{D}^{\circ} \bar{\mathcal{D}}^{*\circ} - \bar{\mathcal{D}}^{\circ} \mathcal{D}^{*\circ} \right)$$

WHEREAS

$$\times_d \sim \frac{A}{\sqrt{2}} \left(D^{\dagger} \bar{D}^{\dagger} - D^{\dagger \dagger} \bar{D}^{-} \right)$$

When by D° and $\overline{D}^{*\circ}$ we mean here $C^{\alpha}(x) \sigma_{2} \overline{u}_{\alpha}(x) \in \overline{C}_{\beta}(y) \sigma_{2} \overrightarrow{\sigma} u^{\beta}(y)$ and so on.

Xu and Xd QUASI-DEGENERATE

WE RECONSIDERED THE PROBLEM OF THE DETERMINATION OF THE

$$M(x_u) - M(x_d) = \epsilon$$

MASS DIFFERENCE FINDING THAT AN APPROPRIATE CHOICE OF $\lambda = R_2/R_1$ Could give $\epsilon \simeq o$.

[MAIANI ET AL. IN PREPARATION]

THUS WE HAVE A (XY, XY) QUASI-DEGENERATE POUBLET

(WITH XA ALLOWED TO DECAY ONLY INTO 4P, W)_

THE DOUBLET GETS MIXED

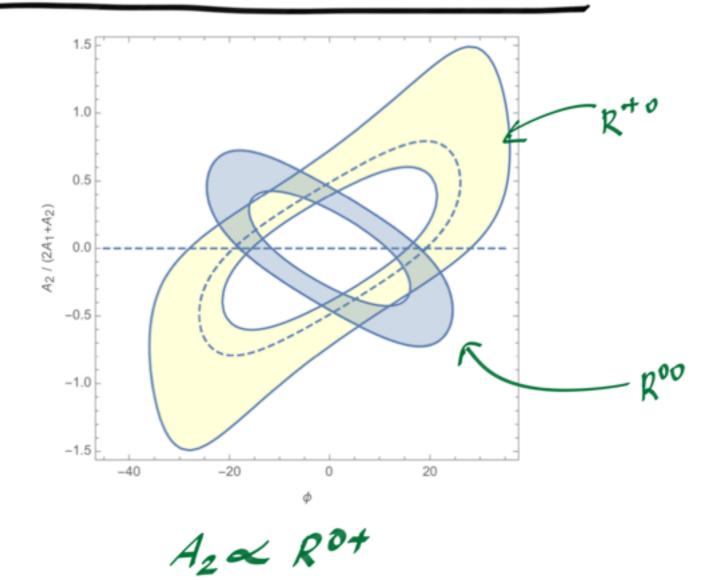
$$X_{\ell} = \cos \theta X_{u} + \sin \theta X_{d}$$

$$X_{\ell} = -\sin \theta X_{u} + \cos \theta X_{d}$$

X4 and Xd QVASI-DEGENERATE

$$\frac{\Gamma(B^{0} \to KX, X \to 4\omega)}{\Gamma(B^{0} \to KX, X \to 4e)} = R^{00} = \frac{\Gamma(B^{0} \to X_{e}, X_{e} \to 4\omega) + (\ell \to k)}{\Gamma(B^{0} \to X_{e}, X_{e} \to 4e) + (\ell \to k)}$$

$$\stackrel{\in XP.}{=} 1.4 \pm 0.6$$


AT THE SAME TIME WE CAN KEEP BELOW 1 THE RATIO

$$\frac{\Gamma(\mathcal{B}^{\circ} \to X^{+}, X^{+} \to \mathcal{V} \rho^{+})}{\Gamma(\mathcal{B}^{\circ} \to X^{\circ}, X^{\circ} \to \mathcal{V} \rho^{\circ})} = \mathcal{R}^{\circ +}$$

15057IN VIOLATION AND NON-OBSERVATION OF X+ LAN LIVE TOGETHER_

00

Xu and Xd QUASI-DEGENERATE

Omix = 45°-9

R° & R+ fined on expt data (willierrous)

WE CAN KEEP A2 VERY LOW...

[MAIANI EAL, IN PREPARATION]

 \longrightarrow WHY χ^{\pm} (3872) STATES ARE ABJENT)

THE AZ AMPLITUDE CAN BE VERY SMALL

--- HOW TO EXPLAIN THE
ISOSPIN VIOLATION PATTERN?

WE HAVE X & & X MEITHER OF WHICH IS

Xu + Xd !

- -- WHY ARE STATES CLOSE

 TO MESON MESON THRESHOLDS,

 STKONG INT IN 3, ARE HALF AS STRONG AS 12
- -- WHY B(X -> 4P) & B(X -> DODNO)?
 BECAUSE OF EXP(-VM) IN BARRIER PENETRATION

THE Ze / & Zb / d

RECALL

$$\chi_{\mu} \sim \frac{A}{\sqrt{2}} \left(\mathcal{D} \bar{D}^{*} \circ - D^{*} \circ \bar{b}^{\circ} \right)$$

$$\chi_d \sim \frac{A}{v_2} \left(O^+ \overline{D}^{*-} - O^{*+} \overline{D}^{-} \right)$$

SIMILARLY

forbidden.

The nontrivial dypendence of BARRIEK PENETRATION FACTORS FROM LIGHT QUARK SPINS ALLOWS Zc -> DD*.

ZC HAS NOT (YET?) BEEN OBSERVED IN B DECAYS. WE COULD HAVE 920 (8245') SO THAT ZE EXZL CORRESPOND TO I=0 & I=1, AND SIZEABLE ROT (as well as R= 7)

OPEN QUESTIONS

- Z=10, Z'=, W B DECAYS?
- Z=10 Z'=, W PROMPT pp COLLISIONS? [Same question for Z's]

FINAL STATES LIKE J/4 11+ SHOULD BE FEASIBLE.

Which resolution can be reached to measure the man of the X° in DD+0 and in 1/4 p? M(xe) - M(xe) could be 20, but this is north being investigated.

what about the Xf (> B° B*0)?

backup

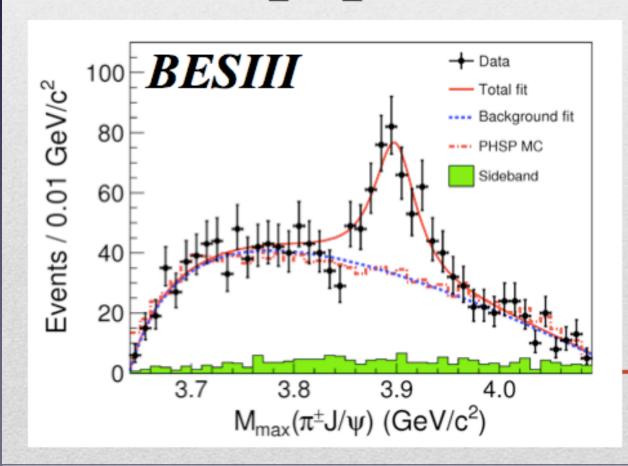
Charged $Z_c(3900)$

Found in $Y(4260) \to Z_c^{\pm}(3900) \pi^{\mp} \to J/\psi \pi^{\pm} \pi^{\mp}$

Exotic charged charmonium-like state!

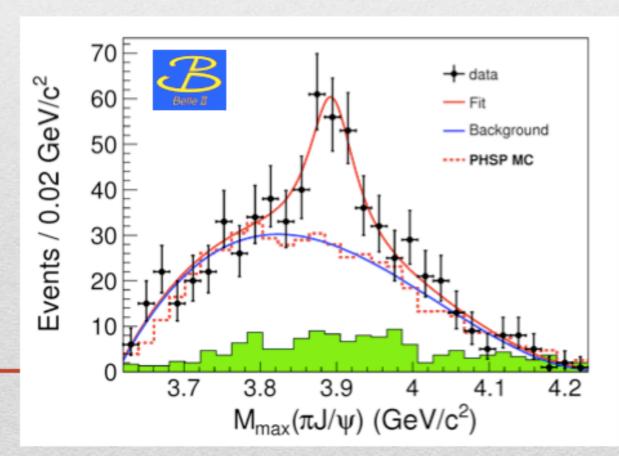
$$G = G_{\pi}C_{J/\psi} =$$

$$= -1(-1) = +1$$


$$P = +1 (S - \text{wave})$$

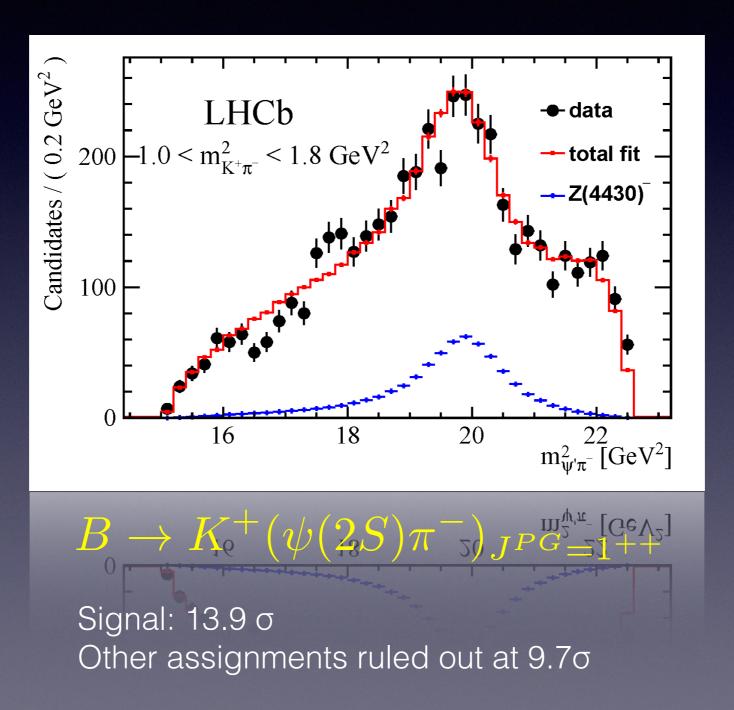
$$\Rightarrow Z_c^0 \text{ has } J^{PC} = 1^{+-}$$

$$I^G J^{PC} = 1^+ 1^{+-}$$


BESIII, arXiv:1303.5949

$$M = 3899.0 \pm 3.6 \pm 4.9 \text{ MeV}$$

 $\Gamma = 46 \pm 10 \pm 20 \text{ MeV}$

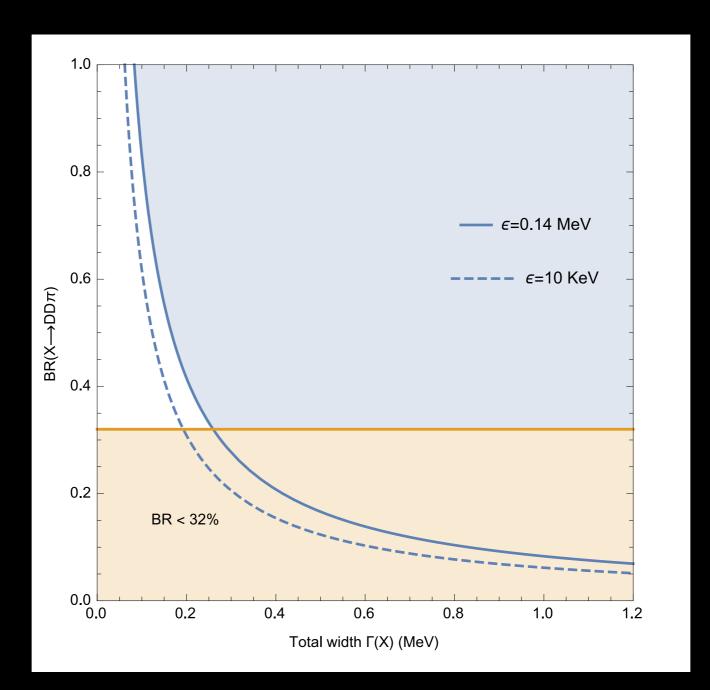


Belle, arXiv:1304.0121

$$M = 3894.5 \pm 6.6 \pm 4.5 \text{ MeV}$$

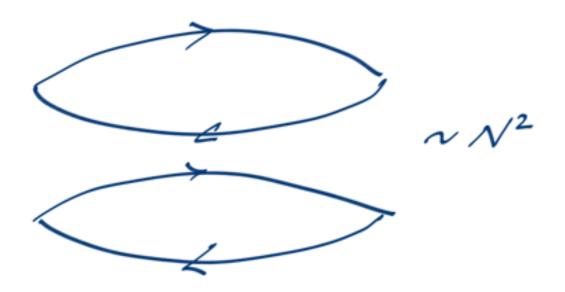
 $\Gamma = 63 \pm 24 \pm 26 \text{ MeV}$

Z(4430)- at LHCb | April 2014



First observed by BELLE in 2007 and not confirmed by BaBar at that time

Binding energy and decay rates


$$B \simeq \frac{G^4}{512 \,\pi^2} \frac{m^5}{(m_a m_b)^4}$$

$$\mathcal{B}(X \to DD\pi) \cdot \Gamma(X) \sim G^2 \sim \sqrt{B}$$

TETRAQUARKS & IN EXPANSION

TETRAQUARK CORRELATORS FOR N-200 REDUCE TO DISCONNECTED MESON-MESON PROPAGATORS (WITTEN NPB 160 (1979))

(THIS WOULD MEAN THAT YM & YA ARE INDISTINGUISHARE!)

IF CONNECTED TETRA QUARKCORRELATORS DEVELOP A POLE, IT WILL BE IRRELEVANT IF ITS RESIDUE IS SUBLEADING WAT DISCONNECTED PARTS (WEWBERG PRL 110 (2013))