HL/HE Questions in Charm (Flavor Physics)

Joachim Brod

Workshop on the physics of HL-LHC
CERN, October 31, 2017
LHCb Upgrades

<table>
<thead>
<tr>
<th>LHC Run</th>
<th>Period</th>
<th>\mathcal{L}_{max} cm2 s</th>
<th>$\int \mathcal{L} dt$/fb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>1&2 2010-2012, 2015-2018</td>
<td>4×10^{32}</td>
<td>8</td>
</tr>
<tr>
<td>Phase-I</td>
<td>1&2 2021-2023, 2026-2029</td>
<td>4×10^{32}</td>
<td>50</td>
</tr>
<tr>
<td>Phase-II</td>
<td>1&2 2031-2033, 2035-</td>
<td>4×10^{32}</td>
<td>300</td>
</tr>
</tbody>
</table>

This corresponds to (hundreds of) billions of charmed hadrons

[LHCb report CERN-LHCC-2017-003]

[LHCb-CONF-2016-005]
SM FCNC flavor dynamics determined by interplay between loop functions and CKM matrix elements

\[c \rightarrow b, s, d \]

\[u \rightarrow b, s, d \]

\[= V_{cq} V_{uq} V_{cq'} V_{uq'} \times f \left(\frac{m^2_q}{M^2_W}, \frac{m^2_q'}{M^2_W} \right) \]

\[
\begin{pmatrix}
| V_{ud} & V_{us} & V_{ub} | \\
| V_{cd} & V_{cs} & V_{cb} | \\
| V_{td} & V_{ts} & V_{tb} |
\end{pmatrix}
\approx
\begin{pmatrix}
1 & \lambda & \lambda^3 \\
\lambda & 1 & \lambda^2 \\
\lambda^3 & \lambda^2 & 1
\end{pmatrix}, \quad \lambda \approx 0.23
\]

“Two-generation dominance” and efficient GIM mechanism

- SM contribution to FCNC effects in charm is small.

- Large long-distance contributions make SM predictions difficult.

- Search for new physics in the up-quark sector!
Why should we do D physics...
Why should we do D physics...

...if B and K physics is under better theoretical control?
I: Mixing is small
\(D^0 - \bar{D}^0 \) mixing

\[
i \frac{d}{dt} \left(|D(t)\rangle \right) = \left(M - i \frac{\Gamma}{2} \right) \left(|\bar{D}(t)\rangle \right)
\]

Diagonalize to get eigenstates

\[
|D_{H,L}\rangle = p|D^0\rangle \mp q|\bar{D}^0\rangle
\]

\[
\Gamma_D \equiv \frac{\Gamma_H + \Gamma_L}{2}, \quad x \equiv \frac{M_H - M_L}{\Gamma_D}, \quad y \equiv \frac{\Gamma_H - \Gamma_L}{2\Gamma_D}.
\]
$D^0 - \bar{D}^0$ mixing – SM estimates

“Inclusive approach”:
- OPE expansion in powers of Λ/m_c
- LO gives $x \sim 10^{-5}$, $y \sim 10^{-7}$
- Higher order $x \sim y \lesssim 10^{-3}$
- Cannot exclude $y \sim 10^{-2}$ ($V_{ub} \neq 0$) [Bobrowski et al. 1002.4794]

“Exclusive approach”:
- Sum over on-shell intermediate states
- Mainly $D \to PP, PV$ leads to $x \sim y \lesssim 10^{-3}$ [Cheng et al. 1005.1106]
- $SU(3)_F$ breaking in phase space $y \sim 10^{-2}$ [Falk et al. hep-ph/0110317]
- Get $x \sim 10^{-2}$ from a dispersion relation [Falk et al. hep-ph/0402204]

Large uncertainties; use experimental values to set upper bounds
$D^0 - \bar{D}^0$ Mixing – NP

- Local NP contributions can be predicted very precisely
- Operator matrix elements from lattice QCD

 [Carrasco et al. 1403.7302, Bazavov et al. 1706.04622]

[Silvestrini 1510.05797]
$D^0 - \bar{D}^0$ Mixing

[LHCb report CERN-LHCC-2017-003]
II: CP violation is small
Three types of CP violation

I $|\tilde{A}_f/A_f| \neq 1$ (CP violation in decay)

$$a_f^d := \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} = \frac{|A_f|^2 - |\tilde{A}_f|^2}{|A_f|^2 + |\tilde{A}_f|^2}$$

II $|q/p| \neq 1$ (CP violation in mixing)

$$a_{sl} := \frac{\Gamma(\bar{D}^0(t) \to \ell^+ X) - \Gamma(D^0(t) \to \ell^- X)}{\Gamma(\bar{D}^0(t) \to \ell^+ X) + \Gamma(D^0(t) \to \ell^- X)} = \frac{|p/q|^2 - |q/p|^2}{|p/q|^2 + |q/p|^2}$$

III $Im(\lambda_f) \equiv Im\left(\frac{q}{p} \frac{\tilde{A}_f}{A_f}\right) \neq 0$ (interference-type CP violation)

$$a_{f_{CP}} := \frac{\Gamma(\bar{D}^0(t) \to f_{CP}) - \Gamma(D^0(t) \to f_{CP})}{\Gamma(\bar{D}^0(t) \to f_{CP}) + \Gamma(D^0(t) \to f_{CP})}$$
Size of CPV in D mixing

- Define $\lambda_q \equiv V_{cq} V_{uq}^*$
- Eliminate λ_d via unitarity: $\lambda_d + \lambda_s + \lambda_b = 0$
- λ_s can be chosen real
- CPV naively suppressed by $r = \text{Im} \lambda_b / \lambda_s \sim 6.5 \times 10^{-4}$
- The mixing amplitude is

$$A = \lambda_s^2 (f_{dd} + f_{ss} - 2f_{ds}) + 2\lambda_s \lambda_b (f_{dd} + f_{bs} - f_{bd} - f_{sd}) + \mathcal{O}(\lambda_b^2)$$

- In terms of U-spin contributions this is [Silvestrini 1510.05797]

$$A = \lambda_s^2 (\Delta U = 2) + 2\lambda_s \lambda_b (\Delta U = 1 + \Delta U = 2) + \mathcal{O}(\lambda_b^2) \sim \lambda_s^2 \epsilon + 2\lambda_s \lambda_b \epsilon^2$$

- For nominal U-spin breaking, $\epsilon \approx 30\%$, expect CPV at order $r/\epsilon \sim 10^{-3}$
- More detailed analysis

[Grossman et al., work in progress; see also talk by L. Silvestrini at this workshop]
Size of CPV in D decay

- Wilson coefficients can be computed **perturbatively**

- Hadronic matrix elements $\langle K\pi|H_{\text{eff}}|D\rangle$ dominated by **nonperturbative QCD**

- QCD factorization expected to work badly ($\Lambda_{\text{QCD}}/m_c \lesssim 1$)

- **Ultimately rely on lattice QCD**

 - Recent progress in $K \rightarrow \pi\pi$ matrix element

 [E.g. Bai et al. 1505.07863]

 - Multiple-channel generalization of Lellouch-Lüscher formula

 [E.g. Polejaeva, Rusetsky 1203.1241; Hansen, Sharpe 1211.0511; Briceño, Davoudi 1212.3398]

- **Until then**: $SU(3)$ flavor symmetry plus assumptions
 (Naive factorization, large-N, “ϵ^2” sum rules, . . .)

 [E.g. Jung et al. 1410.8396, Müller et al. 1506.04121, Nierste et al. 1708.03572, Grossman et al. 1211.3361]

 - For instance, ΔA_{CP} has taught us that DCPV can be of order $\gtrsim 10^{-3}$

 [E.g. Brod et al. 1111.5000, 1203.6659, Pirtskhalava et al. 1112.5451, Feldmann et al. 1202.3795]
III: Null tests and rare decays
Isospin sum rules

- Tree-level \mathcal{H}_{eff} for $D \rightarrow \pi\pi$ has both $\Delta l = 1/2$ and $\Delta l = 3/2$:
 $$Q_T \sim (\bar{d}c)(\bar{u}d)$$

- QCD penguin operators are purely $\Delta l = 1/2$:
 $$Q_P \sim (\bar{c}u) \otimes (\bar{u}u + \bar{d}d + \bar{s}s)$$

- $\Delta l = 3/2$ direct CP-violating transitions are absent in SM.

$$A_{\pi^+\pi^-} = \frac{1}{\sqrt{6}} A_{3/2} + \frac{1}{\sqrt{3}} A_{1/2},$$

$$A_{\pi^0\pi^0} = \frac{1}{\sqrt{3}} A_{3/2} - \frac{1}{\sqrt{6}} A_{1/2},$$

$$A_{\pi^+\pi^0} = \frac{\sqrt{3}}{2} A_{3/2}.$$

- $D^+ \rightarrow \pi^+\pi^0$ purely $\Delta l = 3/2 \Rightarrow$ any CP asymmetry would be NP

- Can write down sum rules also for $D \rightarrow \rho\pi$, $D \rightarrow K^{(*)}\bar{K}^{(*)}\pi(\rho)$, $D_s^+ \rightarrow K^*\pi(\rho)$ [Grossman et al. 1204.3557]
\[D^+ \to \pi^+ \mu^+ \mu^- \text{ and } D^0 \to P^+ P^- \mu^+ \mu^- \]

Angular observables and CP asymmetries are (approximate) SM null tests
[de Boer et al. 1510.00311]

- Fit hadronic contributions
- Asymmetries can be enhanced by resonances

Also rare leptonic decays \(D \to \ell \ell \) [See, e.g., Fajfer 1509.01997]

- Radiative decays \(D \to V \gamma \) relevant for Belle II

[Updated plot thanks to Stefan de Boer]
Why should we do D physics...
Why should we do D physics. . .

. . . if the up- and down sectors are related via weak isospin?
I: Disentangle UV flavor structure
Consider NP that couples to the LH quark doublets, e.g., \(Q_{L,2} \sim (c_L, s_L)^T \)

SM plus NP:

\[
\mathcal{L} \supset Q_{L,i} Y_{ij}^d d_{R,j} H + Q_{L,i} Y_{ij}^u u_{R,j} \tilde{H} + \frac{1}{\Lambda^2} (Q_{L,i} X_{ij} Q_{L,j}) (Q_{L,i} X_{ij} Q_{L,j})
\]

Can always choose a basis where either \(Y^d \) or \(Y^u \) are diagonal

Can always “adjust” NP to have vanishing contribution to either \(K \) mixing or \(D \) mixing, but not both

Combining \(D \) and \(K \) mixing allows to test the UV flavor structure of NP

[Blum et al. 0903.2118]
II: Implications for B physics
\[\gamma \text{ from tree decays – general idea} \]

- \(b \to c \bar{u}s \), \(b \to u \bar{c}s \)
- pure tree-level transition
- interference from common \(D^0, \bar{D}^0 \) final states

\[\propto V_{cb} V_{us}^{*} \]

\[\propto V_{ub} V_{cs}^{*} \]
Including direct CP violation in D decays

[Martone et al. 1212.0165, Zupan 1212.0165; see also Wang 1211.4539, Bhattacharya et al. 1301.5631, Bondar et al. 1303.6305]

- B decay amplitude gets modified:

$$A(B^\pm \to f_D K^\pm) = A_B A_f^T [1 + r_B^\pm e^{i(\delta'_B \pm \gamma \pm \delta \gamma)}]$$

- What is the size of the effect?

$$\delta \gamma = \mathcal{O}(r_f / r_B), \quad \delta'_B - \delta_B = \mathcal{O}(r_f / r_B), \quad r_B^\pm - r_B = \mathcal{O}(r_f)$$

- $r_B(DK) = \mathcal{O}(10\%), \quad \delta \gamma = \mathcal{O}(\text{few \%})$

- $r_B(D\pi) = \mathcal{O}(0.5\%), \quad \delta \gamma = \mathcal{O}(1)$

$$A_{CP}(B \to f_D K) = 2r_B \sin \delta_B \sin \gamma - a_f^{\text{dir}}$$
Including direct CP violation

- Unknowns: $2n_{SCS} + 3n_B + 1$
- Observables: $2n_B(n_{CA} + n_{SCS})$
- Shift symmetry $\gamma \rightarrow \gamma + \phi$, $\alpha_f \rightarrow \alpha_f - \phi$:

$$|A(B^\pm \rightarrow f_D K^\pm)|^2 = |A_B|^2[|A_f|^2 + 2r_B|A_f||\tilde{A}_f|\cos(\delta_B \pm \gamma \pm \alpha_f) + \ldots]$$

- $\alpha_f \equiv \arg(A_f/\tilde{A}_f) = -a^\text{dir}_f \cot \delta_f$
- Cannot extract γ from $B \rightarrow D K$ alone without assumptions
- Measure δ_f at charm factories, or extract from $D - \bar{D}$ mixing
Why should we do D physics...
Why should we do D physics...

...if we can test the up-sector in top-quark decays?
Disentangle UV flavor structure
CP and flavor violating Higgs couplings

- Direct searches for $h \rightarrow cu$ lead to $\mathcal{O}(10\%)$ bounds
- Chromoelectric dipole leads to neutron EDM
- It also leads to CPV contribution in D decays and $D - \bar{D}$ mixing

<table>
<thead>
<tr>
<th>Observable</th>
<th>Coupling</th>
<th>Present bound</th>
<th>Future sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_n^{h}</td>
<td>$\text{Im}(Y^{t c} Y^{c t})$</td>
<td>5.0×10^{-4}</td>
<td>1.7×10^{-6}</td>
</tr>
<tr>
<td>d_n^{u}</td>
<td>$\text{Im}(Y^{t u} Y^{u t})$</td>
<td>4.3×10^{-7}</td>
<td>1.5×10^{-9}</td>
</tr>
<tr>
<td>ΔA_{CP}</td>
<td>$\text{Im}(Y^{u t} Y^{c t})$</td>
<td>4.0×10^{-4}</td>
<td>–</td>
</tr>
<tr>
<td>$D - \bar{D}$</td>
<td>$\sqrt{</td>
<td>\text{Im}(Y^{c t} Y^{u t} Y^{u t} Y^{t u})</td>
<td>}$</td>
</tr>
</tbody>
</table>

[Gorbahn et al. 1404.4873]
Charm physics is theoretically and experimentally challenging

Some observables in principle very sensitive to NP

- Test for NP in the up sector
- Disentangle NP flavor structure
- Future theory progress needed
- Devise SM “null tests”

Important input for B physics

Charm flavor physics will play a prominent role also at future LHCb upgrades