HL/HE Questions in Charm (Flavor Physics)

Joachim Brod

Workshop on the physics of HL-LHC CERN, October 31, 2017

LHCb Upgrades

	LHC Run	Period	$\mathcal{L}_{\text{max}} \ \text{cm}^2 \ \text{s}$	$\int \mathcal{L} dt/fb$
Current	1&2	2010-2012, 2015-2018	4×10^{32}	8
Phase-I	1&2	2021-2023, 2026-2029	4×10^{32}	50
Phase-II	1&2	2031-2033, 2035-	4×10^{32}	300

[LHCb report CERN-LHCC-2017-003]

• This corresponds to (hundreds of) billions of charmed hadrons [LHCb-CONF-2016-005]

D-Meson Physics – Introduction

 SM FCNC flavor dynamics determined by interplay between loop functions and CKM matrix elements

- "Two-generation dominance" and efficient GIM mechanism
 - SM contribution to FCNC effects in charm is small.
- Large long-distance contributions make SM predictions difficult.
- Search for new physics in the up-quark sector!

 \dots if B and K physics is under better theoretical control?

I: Mixing is small

$D^0 - \overline{D}^0$ mixing

Diagonalize to get eigenstates

$$|D_{H,L}\rangle = p|D^0\rangle \mp q|\bar{D}^0\rangle$$

$$\Gamma_D \equiv \frac{\Gamma_H + \Gamma_L}{2}, \quad x \equiv \frac{M_H - M_L}{\Gamma_D}, \quad y \equiv \frac{\Gamma_H - \Gamma_L}{2\Gamma_D}.$$

$D^0 - \overline{D}^0$ mixing – SM estimates

"Inclusive approach":

- OPE expansion in powers of " Λ/m_c "
- LO gives $x \sim 10^{-5}$, $y \sim 10^{-7}$
- Higher order $x \sim y \lesssim 10^{-3}$

[Georgi hep-ph/9209291, Ohl et al. hep-ph/9301212, 1993; Bigi et al. hep-ph/0005089]

• Cannot exclude $y \sim 10^{-2}~(V_{ub}
eq 0)$ [Bobrowski et al. 1002.4794]

"Exclusive approach":

- Sum over on-shell intermediate states
- Mainly D
 ightarrow PP, PV leads to $x \sim y \lesssim 10^{-3}$ [Cheng et al. 1005.1106]
- $SU(3)_F$ breaking in phase space $y \sim 10^{-2}$ [Falk et al. hep-ph/0110317]
- Get $x \sim 10^{-2}$ from a dispersion relation [Falk et al. hep-ph/0402204]

Large uncertainties; use experimental values to set upper bounds

$D^0 - \overline{D}^0$ Mixing – NP

- Local NP contributions can be predicted very precisely
- Operator matrix elements from lattice QCD

[Carrasco et al. 1403.7302, Bazavov et al. 1706.04622]

$D^0 - \overline{D}^0$ Mixing

[LHCb report CERN-LHCC-2017-003]

II: CP violation is small

Three types of CP violation

 $|\bar{A}_{\bar{f}}/A_{f}| \neq 1 \text{ (CP violation in decay)}$

$$a_f^d := \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2}$$

II $|q/p| \neq 1$ (*CP* violation in mixing)

$$a_{sl} := \frac{\Gamma(\bar{D}^0(t) \to \ell^+ X) - \Gamma(D^0(t) \to \ell^- X)}{\Gamma(\bar{D}^0(t) \to \ell^+ X) + \Gamma(D^0(t) \to \ell^- X)} = \frac{|p/q|^2 - |q/p|^2}{|p/q|^2 + |q/p|^2}$$

III $\operatorname{Im}(\lambda_f) \equiv \operatorname{Im}(\frac{q}{p}\frac{\bar{A}_f}{A_f}) \neq 0$ (interference-type *CP* violation)

$$\mathsf{a}_{f_{CP}} := rac{\Gamma(ar{D}^0(t) o f_{CP}) - \Gamma(D^0(t) o f_{CP})}{\Gamma(ar{D}^0(t) o f_{CP}) + \Gamma(D^0(t) o f_{CP})}$$

Size of CPV in D mixing

- Define $\lambda_q \equiv V_{cq} V_{uq}^*$
- Eliminate λ_d via unitarity: $\lambda_d + \lambda_s + \lambda_b = 0$
- λ_s can be chosen real
- CPV naively suppressed by $r = {\rm Im} \lambda_b/\lambda_s \sim 6.5 imes 10^{-4}$
- The mixing amplitude is

 $\mathcal{A} = \lambda_s^2 (f_{dd} + f_{ss} - 2f_{ds}) + 2\lambda_s \lambda_b (f_{dd} + f_{bs} - f_{bd} - f_{sd}) + \mathcal{O}(\lambda_b^2)$

• In terms of *U*-spin contributions this is [Silvestrini 1510.05797]

 $\mathcal{A} = \lambda_s^2(\Delta U = 2) + 2\lambda_s\lambda_b(\Delta U = 1 + \Delta U = 2) + \mathcal{O}(\lambda_b^2) \sim \lambda_s^2 \epsilon + 2\lambda_s\lambda_b\epsilon^2$

- For nominal U-spin breaking, $\epsilon \approx$ 30%, expect CPV at order $r/\epsilon \sim 10^{-3}$
- More detailed analysis

[Grossman et al., work in progress; see also talk by L. Silvestrini at this workshop]

Size of CPV in D decay

- Wilson coefficients can be computed perturbatively
- Hadronic matrix elements $\langle K\pi | \mathcal{H}_{eff} | D \rangle$ dominated by nonperturbative QCD
- QCD factorization expected to work badly ($\Lambda_{
 m QCD}/m_c \lesssim 1$)
- Ultimately rely on lattice QCD
 - Recent progress in $K \to \pi \pi$ matrix element

[E.g. Bai et al. 1505.07863]

- Multiple-channel generalization of Lellouch-Lüscher formula [E.g. Polejaeva, Rusetsky 1203.1241; Hansen, Sharpe 1211.0511; Briceño, Davoudi 1212.3398]
- Until then: SU(3) flavor symmetry plus assumptions (Naive factorization, large-N, "ε²" sum rules, ...) [E.g. Jung et al. 1410.8396, Müller et al. 1506.04121, Nierste et al. 1708.03572, Grossman et al. 1211.3361]
 - $\bullet\,$ For instance, $\Delta {\cal A}_{CP}$ has taught us that DCPV can be of order $\gtrsim 10^{-3}$

[E.g. Brod et al. 1111.5000, 1203.6659, Pirtskhalava et al. 1112.5451, Feldmann et al. 1202.3795]

III: Null tests and rare decays

Isospin sum rules

• Tree-level \mathcal{H}_{eff} for $D \to \pi\pi$ has both $\Delta I = 1/2$ and $\Delta I = 3/2$:

 $Q_T \sim (ar{d}c)(ar{u}d)$

• QCD penguin operators are purely $\Delta I = 1/2$:

$$Q_P \sim (\bar{c}u) \otimes (\bar{u}u + \bar{d}d + \bar{s}s)$$

• $\Delta I = 3/2$ direct *CP*-violating transitions are absent in SM.

$$egin{aligned} &\mathcal{A}_{\pi^+\pi^-} = rac{1}{\sqrt{6}}\mathcal{A}_{3/2} + rac{1}{\sqrt{3}}\mathcal{A}_{1/2}\,, \ &\mathcal{A}_{\pi^0\pi^0} = rac{1}{\sqrt{3}}\mathcal{A}_{3/2} - rac{1}{\sqrt{6}}\mathcal{A}_{1/2}\,, \ &\mathcal{A}_{\pi^+\pi^0} = rac{\sqrt{3}}{2}\mathcal{A}_{3/2}\,. \end{aligned}$$

• $D^+
ightarrow \pi^+ \pi^0$ purely $\Delta I = 3/2 \Rightarrow$ any CP asymmetry would be NP

• Can write down sum rules also for $D \to \rho \pi$, $D \to K^{(*)} \overline{K}^{(*)} \pi(\rho)$, $D_s^+ \to K^* \pi(\rho)$ [Grossman et al. 1204.3557]

Joachim Brod (TU Dortmund)

Charm @ HL-LHCb

 $D^+ \rightarrow \pi^+ \mu^+ \mu^-$ and $D^0 \rightarrow P^+ P^- \mu^+ \mu^-$

- Angular observables and CP asymmetries are (approximate) SM null tests [de Boer et al. 1510.00311]
 - Fit hadronic contributions
 - Asymmetries can be enhanced by resonances
- Also rare leptonic decays $D \rightarrow \ell \ell$ [See, e.g., Fajfer 1509.01997]
 - Radiative decays $D
 ightarrow V\gamma$ relevant for Belle II

... if the up- and down sectors are related via weak isospin?

I: Disentangle UV flavor structure

D mixing versus K mixing

- Consider NP that couples to the LH quark doublets, e.g., $Q_{L,2} \sim (c_L, s_L)^T$
- SM plus NP:

$$\mathcal{L} \supset \overline{Q_{L,i}} Y_{ij}^d d_{R,j} H + \overline{Q_{L,i}} Y_{ij}^u u_{R,j} \widetilde{H} + rac{1}{\Lambda^2} (\overline{Q_{L,i}} X_{ij} Q_{L,j}) \left(\overline{Q_{L,i}} X_{ij} Q_{L,j}
ight)$$

- Can always choose a basis where either Y^d or Y^u are diagonal
- Can always "adjust" NP to have vanishing contribution to *either K* mixing *or D* mixing, but not both
- Combining *D* and *K* mixing allows to test the UV flavor structure of NP [Blum et al. 0903.2118]

II: Implications for B physics

γ from tree decays – general idea

 $B^ A_B$ A_D A_D

- $b \rightarrow c \bar{u} s$, $b \rightarrow u \bar{c} s$
- pure tree-level transition
- interference from common D^0 , \bar{D}^0 final states

Including direct CP violation in D decays

[Martone et al. 1212.0165, Zupan 1212.0165; see also Wang 1211.4539, Bhattacharya et al. 1301.5631, Bondar et al. 1303.6305]

• *B* decay amplitude gets modified:

$$A(B^{\pm} \to f_D K^{\pm}) = A_B A_f^T \left[1 + r_B^{\pm} e^{i(\delta_B' \pm \gamma \pm \delta \gamma)} \right]$$

What is the size of the effect?

$$\delta\gamma = \mathcal{O}(r_f/r_B), \quad \delta'_B - \delta_B = \mathcal{O}(r_f/r_B), \quad r_B^{\pm} - r_B = \mathcal{O}(r_f)$$

•
$$r_B(DK) = \mathcal{O}(10\%), \quad \delta\gamma = \mathcal{O}(\text{few \%})$$

• $r_B(D\pi) = \mathcal{O}(0.5\%), \quad \delta\gamma = \mathcal{O}(1)$

$$A_{CP}(B \rightarrow f_D K) = 2r_B \sin \delta_B \sin \gamma - a_f^{dir}$$

Including direct CP violation

- Unknowns: $2n_{SCS} + 3n_B + 1$
- Observables: $2n_B(n_{CA} + n_{SCS})$
- Shift symmetry $\gamma \rightarrow \gamma + \phi$, $\alpha_f \rightarrow \alpha_f \phi$:

$$|A(B^{\pm} \rightarrow f_D K^{\pm})|^2 = |A_B|^2 \left[|A_f|^2 + 2r_B |A_f| |\bar{A}_f| \cos(\delta_B \pm \gamma \pm \alpha_f) + \dots \right]$$

•
$$\alpha_f \equiv \arg(A_f/\bar{A}_f) = -a_f^{\mathsf{dir}} \cot \delta_f$$

- Cannot extract γ from $B \rightarrow DK$ alone without assumptions
- Measure δ_f at charm factories, or extract from $D \bar{D}$ mixing

... if we can test the up-sector in top-quark decays?

Disentangle UV flavor structure

CP and flavor violating Higgs couplings

- Direct searches for h
 ightarrow cu lead to $\mathcal{O}(10\%)$ bounds
- Chromoelectric dipole leads to neutron EDM
- It also leads to CPV contribution in D decays and $D-\bar{D}$ mixing

Observable	Coupling	Present bound	Future sensitivity
d _n	$ \operatorname{Im}(Y_{tc}Y_{ct}) $	$5.0 imes10^{-4}$	$1.7 imes10^{-6}$
d_n	$ \operatorname{Im}(Y_{tu}Y_{ut}) $	$4.3 imes10^{-7}$	$1.5 imes10^{-9}$
ΔA_{CP}	$ \operatorname{Im}(Y_{ut}^*Y_{ct}) $	$4.0 imes10^{-4}$	-
$D-ar{D}$	$\sqrt{\left \operatorname{Im}(Y_{tc}^{*}Y_{ct}Y_{ut}^{*}Y_{tu})\right }$	$4.1 imes10^{-4}$	$1.3 imes10^{-4}$

[Gorbahn et al. 1404.4873]

Summary

- Charm physics is theoretically and experimentally challenging
- Some observables in principle very sensitive to NP
 - Test for NP in the up sector
 - Disentangle NP flavor structure
 - Future theory progress needed
 - Devise SM "null tests"
- Important input for B physics
- Charm flavor physics will play a prominent role also at future LHCb upgrades