

CERN, 30 Nov- 1st Oct 2017

HL/HE questions in strangeness+tau

Giancarlo D'Ambrosio INFN Sezione di Napoli

taus: Lusiani Pich Passemar

Rare n Strange 2017: strange physics at LHCb

GD, Lewis Tunstall, Diego Martinez Santos,Veronika Chobanova, Xabier Cid Vidal, Francesco Dettori, Marc-Olivier Bettler

Collaboration with Teppei Kitahara arXiv: 1707.06999 PRL

Collaboration with Teppei Kitahara, Isabel Fernández Suárez, Miriam Lucio Martínez, Diego Martínez Santos, Veronika Georgieva Chobanova

Collaboration with Crivellin,A., Kitahara, T and Nierste, U. e-Print: arXiv:1703.05786

Collaboration with Cappiello, L. E. Greynat, D. EPJC

Collaboration with Abhishek Iyer

hyperons: Jorge is the master

Outline

- K⁰->μμ Golden mode
- K_S->πμμ
- K_S->ппее
- K_S->µµµµ
- Questions on hyperons and taus

Rare decay modes of the K mesons in gauge theories

M. K. Gaillard* and Benjamin W. Lee† National Accelerator Laboratory, Batavia, Illinois 605101 (Received 4 March 1974)

Rare decay modes of the kaons such as $K \to \mu \overline{\mu}$, $K \to \pi \nu \overline{\nu}$, $K \to \gamma \gamma$, $K \to \pi \gamma \gamma$, and $K \to \pi e \overline{e}$ are of theoretical interest since here we are observing higher-order weak and electromagnetic interactions. Recent advances in unified gauge theories of weak and electromagnetic interactions allow in principle unambiguous and finite predictions for these processes. The above processes, which are "induced" $|\Delta S| = 1$ transitions, are a good testing ground for the cancellation mechanism first invented by Glashow, Iliopoulos, and Maiani (GIM) in order to banish $|\Delta S| = 1$ neutral currents. The experimental suppression of $K_L \rightarrow \mu \overline{\mu}$ and nonsuppression of $K_L \rightarrow \gamma \gamma$ must find a natural explanation in the GIM mechanism which makes use of extra quark(s). The procedure we follow is the following: We deduce the effective interaction Lagrangian for $\lambda + \mathfrak{N} \rightarrow l + \overline{l}$ and $\lambda + \overline{\mathfrak{N}} \rightarrow \gamma + \gamma$ in the free-quark model; then the appropriate matrix elements of these operators between hadronic states are evaluated with the aid of the principles of conserved vector current and partially conserved axial-vector current. We focus our attention on the Weinberg-Salam model. In this model, $K \rightarrow \mu \overline{\mu}$ is suppressed due to a fortuitous cancellation. To explain the small $K_L - K_S$ mass difference and nonsuppression of $K_L \rightarrow \gamma \gamma$, it is found necessary to assume $m_{\rho}/m_{\rho'} << 1$, where m_{ρ} is the mass of the proton quark and $m_{\phi'}$ the mass of the charmed quark, and $m_{\phi'} < 5$ GeV. We present a phenomenological argument which indicates that the average mass of charmed pseudoscalar states lies below 10 GeV. The effective interactions so constructed are then used to estimate the rates of other processes. Some of the results are the following: $K_S \rightarrow \gamma \gamma$ is suppressed; $K_S \rightarrow \pi \gamma \gamma$ proceeds at a normal rate, but $K_L \rightarrow \pi \gamma \gamma$ is suppressed; $K_L \rightarrow \pi \nu \overline{\nu}$ is very much forbidden, and $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ occurs with the branching ratio of ~ 10⁻¹⁰; $K^+ \rightarrow \pi^+ e \overline{e}$ has the branching ratio of $\sim 10^{-6}$, which is comparable to the presently available experimental upper bound. The predictions of other models are briefly discussed. Relevant renormalization

VALUE (10 ⁻⁹)	CL%	DOCUMENT ID		TECN
< 9	90	1 AAIJ	2013G	LHCB
••• We do not use the following data	for averages, fits, limits, etc			
$< 0.032 \times 10^4$	90	GJESDAL	1973	ASPK
$< 0.7 \times 10^4$	90	HYAMS	1969B	OSPK
¹ AAIJ 2013G uses 1.0 fb ⁻¹ of pp co	ollisions at $\sqrt{s} = 7$ TeV. They	obtained B($K_c^0 \rightarrow \mu^+ \mu^-$)	$< 11 \times 10^{-10}$	⁻⁹ at 95% C.L.

 $K_{S} \rightarrow \mu \mu$

K_{s} -> $\mu\mu$: how to improve the THEORY error

Dispersive treatment of $K_S \rightarrow \gamma \gamma$ and $K_S \rightarrow \gamma l^+ l^-$

Gilberto Colangelo, Ramon Stucki, and Lewis C. Tunstall

LD 5×10^{-12} 20% TH err

$$K_S \to \gamma \mu \mu$$
$$K_S \to \mu \mu \mu \mu$$
$$K_S \to ee \mu \mu$$
$$K_S \to \gamma \gamma$$

 $K_L \rightarrow \mu \mu$

FIG. 7. Leading contributions to $\lambda + \overline{\mathfrak{N}} - \gamma + \gamma$. To leading order in $M_{\overline{W}}^{-2}$, the diagrams in (a) reduce to those of (b).

VALUE (10-6) EVTS DOCUMENT ID TECN С 3.48 ± 0.05 OUR AVERAGE 3.474 ±0.057 6210 AMBROSE 2000 B871 3.87 ±0.30 179 1 AKAGI 1995 SPEC 3.38 ± 0.17 HEINSON 707 1995 B791 · · · We do not use the following data for averages, fits, limits, etc. · · · 3.9 ±0.3 ±0.1 2 AKAGI 178 SPEC 1991B In

$$\mathcal{B}(K_L \to \mu^+ \mu^-)_{\rm exp} = (6.84 \pm 0.11) \times 10^{-9}$$

 $K_L
ightarrow \gamma \mid_{\mathrm{exp}} \mathsf{known}$

Gaillard Lee

We do not know the sign of $A(K_L o \gamma \gamma)$

$$A(K_L \to 2\gamma_{\perp})_{O(p^4)} = A(K_L \to \pi^0) A(\pi^0 \to 2\gamma_{\perp}) \left[\frac{1}{M_K^2 - M_\pi^2} + \frac{1}{3} \cdot \frac{1}{M_K^2 - M_8^2} \right] \simeq 0$$

Kaon Decays in the Standard Model Vincenzo Cirigliano (Los Alamos), Gerhard Ecker, Helmut Neufeld (Vienna U.), Antonio Pich, Jorge Portoles, refs therein

 $K_I \rightarrow M M$

 $0.98 \pm 0.55 = |ReA|^2 = (\chi_{\gamma\gamma}(M_{\rho}) + \chi_{\text{short}} - 5.12)^2$

$$|\chi_{\rm short}^{\rm SM}| = 1.96(1.11 - 0.92\bar{\rho})$$

RBC-UK QCD

Buras K->2π

$$\epsilon' \epsilon = (1.4 \pm 7.0) \cdot 10^{-4}$$

$$\left(\frac{\text{Re }A_0}{\text{Re }A_2}\right) = 31.0 \pm 6.6$$

$$(\epsilon' \epsilon)_{exp} = (16.6 \pm 2.3) \cdot 10^{-4}$$

$$\left(\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}\right)_{exp} = 22.4$$

The epsilon'/epsilon tension and supersymmetric interpretation

Teppei Kitahara: Karlsruhe Institute of Technology (KIT), XIIth Meeting on B Physics, 23 May, 2017, Napoli, Italy

Kei Yamamoto, FPCP2017 Models solving ε'/ε anomaly

Several new physics models have been studied to explain ε'/ε anomaly

MSSM chargino Z penguin	[M. Endo, S. Mishima, D. Ueda and KY, PLB762(2016)493]
gluino Z penguin	[M. Tanimoto and KY, PTEP(2016)no.12,123B02]
gluino box	[T.Kitahara, U.Nierste and P.Tremper, PRL117(2016)no.9, 091802 A.Crivellin, G.D'Ambrosio, T.Kitahara and U.Nierste, 1703.05786]
Vector-like quarks	[C.Bobeth, A.J.Buras, A.Celis and M.Jung, JHEP1704(2017)079]
Little Higgs Model with T-parity	[M.Blanke, A.J.Buras and S.Recksiegel, EPJ.C76 (2016)no.4,182]
331 model	[A.J.Buras and F.De Fazio, JHEP1603(2016)010 & JHEP1608 (2016) 115]
Right handed current [V. S.Alioli, V.Cirig	Cirigliano, W.Dekens, J.de Vries and E.Mereghetti, PLB 767 (2017) 1 Iliano, W.Dekens, J.de Vries and E.Mereghetti, JHEP1705 (2017)086

Different implications (correlations & predictions) for other observables appear depending on models \Rightarrow Possibility of model discriminations

Can we study K⁰(t)?

GD , Kitahara 1707.06999 PRL

$$\begin{aligned} |\widetilde{K}^{0}(t)\rangle &= \frac{1}{\sqrt{2}(1\pm\overline{\epsilon})} \left[e^{-iH_{S}t} \left(|K_{1}\rangle + \overline{\epsilon}|K_{2}\rangle \right) \\ &\pm e^{-iH_{L}t} \left(|K_{2}\rangle + \overline{\epsilon}|K_{1}\rangle \right) \right] \end{aligned} \qquad D = \frac{K^{0} - \overline{K}^{0}}{K^{0} + \overline{K}^{0}} \end{aligned}$$

- Short distance interfering with Large CP conserving LD contribution !
- We may be able to study the time evolution of K^0 by tracking the associated particles (K⁻)

$$\sum_{\text{spin}} \mathcal{A}(K_1 \to \mu^+ \mu^-)^* \mathcal{A}(K_2 \to \mu^+ \mu^-)$$
$$\sim \text{Im}[\lambda_t] y_{7A}' \left\{ A_{L\gamma\gamma}^{\mu} - 2\pi \sin^2 \theta_W \left(\text{Re}[\lambda_t] y_{7A}' + \text{Re}[\lambda_c] y_c \right) \right\}$$

Short distance window

$$\begin{split} \mathcal{B}(K_S \to \mu^+ \mu^-)_{\text{eff}} \\ &= \tau_S \left[\int_{t_{min}}^{t_{max}} dt \left(\Gamma(K_1) e^{-\Gamma_S t} + \frac{D}{8\pi M_K} \sqrt{1 - \frac{4m_{\mu}^2}{M_K^2}} \sum_{\text{spin}} \text{Re} \left[e^{-i\Delta M_K t} \mathcal{A}(K_1)^* \mathcal{A}(K_2) \right] e^{-\frac{\Gamma_S + \Gamma_L}{2} t} \right) \varepsilon(t) \right] \\ &\times \left(\int_{t_{min}}^{t_{max}} dt \, e^{-\Gamma_S t} \, \varepsilon(t) \right)^{-1}, \end{split}$$

$K_S \rightarrow \mu \ \mu$ prospects

achieved by LHCb upgrade with trigger improvements

 Starting to investigate tagged decays, which would allow to access NP in the K_S-K_L interference [D'Ambrosio&Kitahara https://

Extrapolating from Run-I result

The most interesting region can be

le Phase-II-upgrade? arxiv.org/abs/1707.06999]

 $K^{\pm}(K_S) \rightarrow \pi^{\pm}(\pi^0)\ell^+\ell^-$

short distance << long distance

LD described by form factor W

$$W^i = G_F m_K^2 (a_i + b_i z) + W^i_{\pi\pi}(z)$$

 $i = \pm, S$
 $a_i, b_i \sim O(1), \qquad z = rac{q^2}{m_K^2}$

- Observables $\Gamma(K^+ \to \pi^+ e^+ e^-)$, $\Gamma(K^+ \to \pi^+ \mu \overline{\mu})$, slopes
- $a_i \quad O(p^4)$ $a_+ \sim N_{14} N_{15}$, $a_S \sim 2N_{14} + N_{15}$ Ecker, Pich, de Rafael • $b_i \quad O(p^6)$ G.D., Ecker, Isidori, Portoles
- a_+, b_+ in general not related to a_S, b_S

averaging flavour

 $a_{\pm}^{\text{exp.}} = -0.578 \pm 0.016$ $b_{\pm}^{\text{exp.}} = -0.779 \pm 0.066$ • $K_S \rightarrow \pi^0 l^+ l^-$ at NA48/1 Collaboration at CERN • $K_S \rightarrow \pi^0 e^+ e^-$ 7 evts observed (with 0.15 expected bkg evts)

$$B(K_S \to \pi^0 e^+ e^-)_{m_{ee} > 165 \text{ MeV}} = (3.0^{+1.5}_{-1.2} \pm 0.2) \times 10^{-9}$$

$$|a_S| = 1.08^{+0.26}_{-0.21}$$

• $K_S \rightarrow \pi^0 \mu^+ \mu^-$ 6 events observed

$$B(K_S \to \pi^0 \mu^+ \mu^-) = (2.9^{+1.5}_{-1.2} \pm 0.2) \times 10^{-9}$$

$$|a_S|_{\mu\mu} = 1.54^{+0.40}_{-0.32} \pm 0.06$$

G. D'Ambrosio

Theory of Kaon Physics

$$K_L \rightarrow \pi^0 e^+ e^-$$
 : summary

 $Br(K_L \to \pi^0 e^+ e^-) \le 2.8 \cdot 10^{-10} \text{ at } 90\% \text{ CL}$ KTeV

CP conserving NA48

$$Br(K_L \to \pi^0 e^+ e^-) < 3 \cdot 10^{-12}$$

 $V-A \otimes V-A \Rightarrow \langle \pi^0 e^+ e^- | (\bar{s}d)_{V-A} (\bar{e}e)_{V-A} | K_L \rangle$ violates CP

Possible large interference: $a_S < -0.5$ or $a_S > 1$; short distance probe even for a_S large

$$|2) + 3)|^{2} = \left[15.3 \ a_{S}^{2} - 6.8 \frac{Im\lambda_{t}}{10^{-4}} \ a_{S} + 2.8 \left(\frac{Im\lambda_{t}}{10^{-4}}\right)^{2}\right] \cdot 10^{-12}$$

$$[17.7 \pm 9.5 + 4.7] \cdot 10^{-12}$$

$K_S \rightarrow \pi^0 \mu \mu$ sensitivity study

CERN-LHCb-PUB-2016-017

Diego Martinez Santos, FCCP 2017

18

$K_S \rightarrow \pi^0 \mu \mu$ sensitivity study

Normalize yields to $K_S \rightarrow \pi \pi \rightarrow sensitivity$ to BR

V. Chobanova et al, CERN-LHCb-PUB-2016-017

$K_S \rightarrow \pi^0 \mu \mu$ short distance?

$$A_{FB}^{K_S^{\pi^0\mu\mu}}(z) = \frac{\Gamma(\cos\theta_{K\mu} > 0) - \Gamma(\cos\theta_{K\mu} < 0)}{\Gamma(\cos\theta_{K\mu} > 0) + \Gamma(\cos\theta_{K\mu} < 0)}$$

- sensitive to short distance physics
- several background to control $(\epsilon_K |a_S|^2)$

$$K_S \to \pi^+ \pi^- \mu \mu \sim 10^{-14}$$

 $K_S \to \pi^+ \pi^- ee \sim 10^{-5}$

-
$$\Gamma(K_S^0 \to \pi^+ \pi^- e^+ e^-) / \Gamma_{\text{total}}$$

$VALUE(10^{-5})$	EVTS	DOCUMENT ID		TECN	COMMENT
4.79 ± 0.15	OUR AVERAGE				
$4.83 \pm 0.11 \pm 0.14$	23k	¹ BATLEY	2011	NA48	2002 data
4.69 ±0.30	676	² LAI	2003C	NA48	1998+1999 data

· · · We do not use the following data for averages fits limits etc. · · ·

$K(p_K) \rightarrow \pi(p_1)\pi(p_2)\gamma(q)$

• Lorentz + gauge invariance \Rightarrow Electric (E) and Magnetic(M) amplitude

$$A(K \to \pi \pi \gamma) = F^{\mu\nu} \left[E \partial_{\mu} K \partial_{\nu} \pi + M \varepsilon_{\mu\nu\rho\sigma} \partial^{\rho} K \partial^{\sigma} \pi \right]$$

• Unpolarizated photons $\frac{d^{2}\Gamma}{dz_{1}dz_{2}} \sim |E|^{2} + |M|^{2}$ $|E^{2}| = |E_{IB}|^{2} + 2Re(E_{IB}^{*}E_{D}) + |E_{D}|^{2}$ \downarrow Low Theorem $\Rightarrow E_{IB} \sim \frac{1}{E_{\gamma}^{*}} + c$ $E_{D}, M \text{ chiral}$

tests

$K^+ \rightarrow \pi^+ \pi^0 \gamma$ Dalitz plot NA48/2

K⁺-> π⁺π⁰ee

Starting from CP conserving IB, DE

$q_c~({\sf MeV})$	$B [10^{-8}]$	B/M	B/E	B/BE	B/BM
$2m_l$	418.27	71	4405	128	208
55	5.62	12	118	38	44
100	0.67	8	30	71	36
180	0.003	12	5	-19	44

Interesting channels

GD, Greynat, Vulvert

Hyperons

- Hyperon semileptonic decays/Vus determination
- Search for resonance (Hypercp) $\Sigma \rightarrow p \mu \mu$

$\rightarrow \Lambda \mu^- \overline{\nu}_{\mu}$		$\Lambda \rightarrow p \mu^- \overline{\nu}_\mu$					
$\Gamma(\varXi^-\to \Lambda\mu^-\overline{\nu}_\mu)/\Gamma(\varXi^-\to\Lambda\pi^-)$		• $\Gamma(\Lambda \to p\mu^{-1})$	ν _μ)/Γ(/	$\Lambda \rightarrow N\pi$)			
VALUE (10 ⁻³) CL% EVTS DOCUMENT ID TECN COMM	MMENT	VALUE (10 ⁻⁴)	EVTS	DOCUMEN	T ID	TECN	COMMENT
0.35 ^{+0.35} _{-0.22} OUR FIT		1.57 ± 0.35	OUR FIT				
0.35 ±0.35 1 YEH 1974 HBC Effecti	ctive denom.=2859	1.57 ± 0.35	OUR AV	ERAGE			
*** We do not use the following data for averages, fits, limits, etc ***		1.4 ±0.5	14	BAGGETT	1972B	HBC	K^-p at rest
42.3 90 0 THOMPSON 1980 ASPK Effection	ctive denom.=1017	2.4 ± 0.8	9	CANTER	1971B	HBC	K ⁻ p at rest
<1.3 DAUBER 1969 HBC		1.3 ±0.7	3	LIND	1964	RVUE	
<12 BERGE 1966 HBC		1.5 ±1.2	2	RONNE	1964	FBC	
ferences		References					
THOMPSON 1980 PR D21 25 Studies in the BNL 21 GeV/c	c Negative Hyperon Beam.	BAGGETT 19	728 Z	PHY 252 362	Measu	urement o	of the $\Lambda \rightarrow p\mu$
YEH 1974 PR D10 3545 Observation of Rare Decay Mo	Modes of the Ξ Hyperons	CANTER 19	718 P	RL 27 59	Branct	hing Rati	io for $\Lambda \rightarrow p \mu \bar{\nu}$
DAUBER 1969 PR 179 1262 Production and Decay of Case	scade Hyperons	LIND	1964 Pf	R 135 B1483	Experi	mental Ir	nvestigation of
BERGE 1966 PR 147 945 Some Properties of Ξ [−] and Ξ 1.7 GeV/c	Ξ^0 Hyperons Produced in .	RONNE 1	1964 PI	L 11 357	Branct	hing Rati	io for the Muoni
ee fit info		see fit info					

• Most data in the μ -channel is very old (60's and 70's)! $\delta Br/Br \sim 10\% - 100\%$

	$\Lambda \rightarrow p$	$\Sigma^{-} \rightarrow n$	$\Xi^0{\rightarrow}\Sigma^+$	$\Xi^- { ightarrow} \Lambda$
Expt.	0.189(41)	0.442(39)	0.0092(14)	0.6(5)
SM-NLO	0.153(8)	0.444(22)	0.0084(4)	0.275(14)

• Good agreement between SM and data \Rightarrow Bounds on $\epsilon_{S}^{\mathfrak{s}\ell}$ and $\epsilon_{T}^{\mathfrak{s}\ell}$

Possible tau issues

 ν_{τ}

g_{e,µ}

, μ

 $\overline{v}_e, \overline{v}_\mu$

Experiment	Number of $\boldsymbol{\tau}$ pairs
LEP	~3x10⁵
CLEO	~1x10 ⁷
BaBar	~5x10 ⁸
Belle	~9x10 ⁸
Belle II	~1012

- Leptonic universality
- QCD tests
- Vus
- Lepton flavour universality

Passemar 16

M. Endo@b2tip'15

Barr-Zee contribution with A enhances muon g-2

Figure 5: Evolution of 90% CL upper limit on LFV in τ decays vs. approximate number of τ decays studied.

Higgs couplings to μe

Outside of LHC reach.

Probing "natural" models.

Higgs couplings to $\tau\mu$

LHC h→Tµ Gives dominant Bound. (currently just a theorist's re-interpretation)

"natural models" are within reach.

RH, Kopp, Zupan 1209.1397

Higgs couplings to τe

* τe is similar to $\tau \mu$ but:

Harnik, Kopp Zupan 1209.1397

Altmannshofer & Straub'14, Crivellin, GD, Heeck 15

 $\psi_1^0 \approx H$

Conclusions

- My personal view: we are just at the beginning in exploring the potentiality: See KS->µµ, also the improvement for Ecal (I did not discuss much ee in the final state)
- New ideas in this sector came out recently

Crivellin

R(D^(*)) and $b \rightarrow s\tau\tau$ with Leptoquarks

- Large couplings to the 2nd generation needed in order avoid collider bounds.
- Cancelation in b→svv needed: C⁽¹⁾=-C⁽³⁾

Kaon physics

Tests of CPV already among most stringent (ϵ_{K} , ϵ ') Near future improvements mostly due to theory (Lattice) More progress foreseen in rare decays

$$\Rightarrow K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \pi^0 \nu \bar{\nu}$$

⇒ rare K decays at HL-LHCb?

d'Ambrosio, PoS(FPCP2015)018

```
\begin{array}{cccc} \text{PDG} & \text{Prospects} \\ K_S \to \mu \mu & <9 \times 10^{-9} \text{ at } 90\% \text{ CL } (\text{LD})(5.0 \pm 1.5) \cdot 10^{-12} & \text{NP} < 10^{-11} \\ K_L \to \mu \mu & (6.84 \pm 0.11) \times 10^{-9} & \text{difficult}: \text{ SD} << \text{LD} \\ K_S \to \mu \mu \mu \mu & - & \text{SM LD} \sim 2 \times 10^{-14} \\ K_S \to ee\mu \mu & - & \sim 10^{-11} \\ K_S \to eeee & - & \sim 10^{-10} \\ K_S \to \pi^+ \pi^- \mu^+ \mu^- & - & \text{SM LD} \sim 10^{-14} \end{array} \right\} \quad \text{NP?}
```

SD depends from a crucial sign

$$\mathcal{B}(K_L \to \mu^+ \mu^-)_{\rm SM} = \begin{cases} (6.85 \pm 0.80 \pm 0.06) \times 10^{-9}(+), \\ (8.11 \pm 1.49 \pm 0.13) \times 10^{-9}(-), \end{cases}$$

 $\mathcal{B}(K_S \to \mu^+ \mu^-)_{\rm SM} = (4.99 \,({\rm LD}) + 0.19 \,({\rm SD})) \times 10^{-12}$ $= (5.18 \pm 1.50 \pm 0.02) \times 10^{-12}$

We need FIGHT DE/IB $\sim 10^{-3}$

$$\begin{array}{ccccccc} IB & DE_{exp} \\ K_S \to \pi^+ \pi^- \gamma & 10^{-3} & <9 \cdot 10^{-5} & E1 \\ K^+ \to \pi^+ \pi^0 \gamma & \begin{matrix} 10^{-4} & (0.44 \pm 0.07) 10^{-5} \\ (\Delta I = \frac{3}{2}) & PDG \end{matrix} & M1, E1 \\ K_L \to \pi^+ \pi^- \gamma & \begin{matrix} 10^{-5} & (2.92 \pm 0.07) 10^{-5} & M1, \\ (CPV) & KTeVnew & VMD \end{matrix}$$

CPV is only from IB K_L (also measured in $K_L \to \pi^+ \pi^- e^+ e^-$) BUT IB suppressed in K^+ and K_L .

$$K^+ \to \pi^+ \pi^0 \gamma$$

$$A(K \to \pi \pi \gamma) = F^{\mu\nu} \left[E \partial_{\mu} K \partial_{\nu} \pi + M \varepsilon_{\mu\nu\rho\sigma} \partial^{\rho} K \partial^{\sigma} \pi \right]$$

 $\underline{E1}$ and $\underline{M1}$ are measured with Dalitz plot

$$\frac{\partial^{2}\Gamma}{\partial T_{c}^{*}\partial W^{2}} = \frac{\partial^{2}\Gamma_{IB}}{\partial T_{c}^{*}\partial W^{2}} \left[1 + \frac{m_{\pi^{+}}^{2}}{m_{K}} 2Re\left(\frac{E1}{eA}\right) W^{2} + \frac{m_{\pi^{+}}^{4}}{m_{K}^{2}} \left(\left|\frac{E1}{eA}\right|^{2} + \left|\frac{M1}{eA}\right|^{2}\right) W^{4} \right]$$

$$egin{aligned} W^2 &= (q \cdot p_K) (q \cdot p_+) / (m_\pi^2 m_K^2) \ A &= A (K^+ o \pi^+ \pi^0) \end{aligned}$$

NA48/2 CP violation

$$\begin{array}{ll} \mbox{Dalitz plot analysis crucial} \\ \mbox{SM} \leq \mathcal{O}(10^{-5}) & \mbox{Paver et al.} \\ \mbox{NP} \leq \mathcal{O}(10^{-4}) & \mbox{Colangelo et al.} \end{array}$$

NA48/2 $< 1.5 \cdot 10^{-3}$ at 90% CL

BUT NOT in the interesting interf. kin. region (statistics)

$$K_L \to \pi^+ \pi^- \gamma^* \to \pi^+ \pi^- e^+ e^-$$

Sehgal et al; Savage, Wise et al

•
$$\mathcal{M}_{LD} = \frac{e}{q^2} \bar{e} \gamma^{\mu} (1 - \gamma^5) e H_{\mu}$$

•
$$H^{\mu} = F_1 p_1^{\mu} + F_2 p_2^{\mu} + F_3 \varepsilon^{\mu\nu\alpha\beta} p_{1\nu} p_{2\alpha} q_{\beta}$$

•
$$F_{1,2} \sim E$$
 $F_3 \sim M$

- Interference $E \quad M$ novel compared to $K_L \to \pi^+ \pi^- \gamma$
- *E M* known from $K_L \rightarrow \pi^+ \pi^- \gamma$ (IB and DE)

$$K^+ \rightarrow \pi^+ \pi^0 \gamma^* \rightarrow \pi^+ \pi^0 e^+ e^-$$

Cappiello, Cata, G.D. and Gao,

• the asymm. , $\frac{\Re(E_B\ M^*)}{|E_B|^2+|M|^2}$, not as lucky $E_B>>M$:

- $B(K^+)_{IB} \sim 3.3 \times 10^{-6} \sim 50 \ B(K^+)_M$
- Short distance info without having simultaneously K⁺ and K⁻, asymm. in phase space, (P-violation) interesting! No ε-contamination

- interesting Dalitz plots (at fixed q^2) to disentangle M from E_B
- at $q^2 = 50 \text{MeV}$ IB only 10 times larger than DE