LHCb Upgrade II: Adding Precise Timing to the Vertex Locator

Workshop on the physics of HL-LHC, and perspectives at HE-LHC

CERN
1 Nov 2017
Mark Williams

The University of Manchester
Introduction: The LHCb Vertex Locator

Vertex Locator (VELO) – a silicon strip detector surrounding the LHCb luminous region
Provides precise measurements of charged particle trajectories:
• Primary and secondary vertex reconstruction
• Precise lifetime measurements
• Rejection of backgrounds
Introduction: The LHCb Vertex Locator

Vertex Locator (VELO) – a silicon strip detector surrounding the LHCb luminous region provides precise measurements of charged particle trajectories:

- Primary and secondary **vertex reconstruction**
- Precise **lifetime measurements**
- Rejection of backgrounds

Special Features:

- Within beam pipe (separated from primary vacuum by thin RF foil)
- Detector retracts during injection

(One half of VELO)
We are here

Timeline

Run 2 LS2 Run 3 LS3 Run 4 LS4 Run 5,6,...

Install LHCb Upgrade I LS3 Consolidation HL-LHC: Upgrade II

Adding precise timing to the LHCb Vertex Locator 1 Nov 2017 Mark Williams
Timeline

We are here

Run 2 | LS2 | Run 3 | LS3 | Run 4 | LS4 | Run 5,6,...

Install LHCb Upgrade I
LS3 Consolidation
HL-LHC: Upgrade II

VELO

Silicon strip detector
\[\mathcal{L} = 4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1} \]
1.1 visible interactions / crossing

Adding precise timing to the LHCb Vertex Locator 1 Nov 2017 Mark Williams
Adding precise timing to the LHCb Vertex Locator

Mark Williams

1 Nov 2017

VELO

Silicon strip detector
\[\mathcal{L} = 4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1} \]
1.1 visible interactions / crossing

VELO Upgrade I

Silicon pixel detector
\[\mathcal{L} = 2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1} \quad (5\times) \]
5.5 visible interactions / crossing

VELO

Silicon strip detector
\[\mathcal{L} = 4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1} \]
1.1 visible interactions / crossing

Run 2

LS2

Run 3

LS3

Run 4

LS4

Run 5,6,...

Install LHCb Upgrade I

LS3 Consolidation

HL-LHC: Upgrade II

We are here
Timeline

Run 2 LS2 Run 3 LS3 Run 4 LS4 Run 5,6,...

Install LHCb Upgrade I LS3 Consolidation HL-LHC: Upgrade II

VELO

Silicon strip detector
\[\mathcal{L} = 4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1} \]
1.1 visible interactions / crossing

VELO Upgrade I

Silicon pixel detector
\[\mathcal{L} = 2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1} \] (5x)
5.5 visible interactions / crossing

VELO-II

Pixel detector with timing
\[\mathcal{L} = 1-2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \] (5-10x)
55 visible interactions / crossing
Major Changes:

- **Pixels** (55μm) to handle higher particle multiplicity
- **Closer to beam** (5.1mm)
- **Full 40 MHz read-out**
We need:

- Precision spatial measurements of charged particles
- High track-finding efficiency
- Low ghost/clone rate
VELO Upgrade II?

We need:

- Precision spatial measurements of charged particles
- High track-finding efficiency
- Low ghost/clone rate
- Low material
- Close to beam line
- Precise single-hit measurements
We need:

- **Precision spatial measurements of charged particles**
 - Low material
 - Close to beam line
 - Precise single-hit measurements

- **High track-finding efficiency**
 - Full coverage within acceptance
 - High granularity

- **Low ghost/clone rate**
 - Multiple $O(10)$ hits per particle
VELO Upgrade II?

We need:

- Precision spatial measurements of charged particles
- High track-finding efficiency
- Low ghost/clone rate

+ Radiation hard

- Low material
- Close to beam line
- Precise single-hit measurements
- Full coverage within acceptance
- High granularity
- Multiple $O(10)$ hits per particle

Adding precise timing to the LHCb Vertex Locator 1 Nov 2017 Mark Williams
We need:

Precision spatial measurements of charged particles

High track-finding efficiency

Low ghost/clone rate

+ Radiation hard

- Low material
- Close to beam line
- Precise single-hit measurements

Full coverage within acceptance

High granularity

Multiple O(10) hits per particle

Inside beam pipe (and retractable)
We need:

- Precision spatial measurements of charged particles
- High track-finding efficiency
- Low ghost/clone rate
- Low material
- Close to beam line
- Precise single-hit measurements
- Full coverage within acceptance
- High granularity
- Multiple O(10) hits per particle

+ Radiation hard

Inside beam pipe (and retractable)
VELO Upgrade II?

We need:

- Precision spatial measurements of charged particles
- High track-finding efficiency
- Low ghost/clone rate
- Low material
- Close to beam line
- Precise single-hit measurements
- Full coverage within acceptance
- High granularity
- Multiple O(10) hits per particle
- High read-out rate
- High performance, low material cooling

+ Radiation hard

Inside beam pipe (and retractable)
Silicon pixels

Adding precise timing to the LHCb Vertex Locator 1 Nov 2017
Mark Williams
Sound familiar?

VELO Upgrade-I must fulfil same basic requirements

Inside beam pipe (and retractable) Silicon pixels High read-out rate High performance, low material cooling

Adding precise timing to the LHCb Vertex Locator 1 Nov 2017 Mark Williams
Sound familiar?
VELO Upgrade-I must fulfil same basic requirements

Additional challenges:
• 10x higher particle multiplicity
• 10x denser vertex environment
• 10x higher radiation damage

Inside beam pipe (and retractable)
Silicon pixels
High read-out rate
High performance, low material cooling
How can Timing Help

Adding timing information to the pixel hits can potentially recover / gain performance:

• Improved pattern recognition – reduces hit combinatorics in tracking
• Improved background rejection – reduces track combinatorics when reconstructing decay chains
• Improved PV association – reduced vertex combinatorics
Adding timing information to the pixel hits can potentially recover / gain performance:

- **Improved pattern recognition** – reduces hit combinatorics in tracking
- **Improved background rejection** – reduces track combinatorics when reconstructing decay chains
- **Improved PV association** – reduced vertex combinatorics

The main topic of this talk:
using timing to reduce PV mis-association for long-lived particles
How can Timing Help

Adding timing information to the pixel hits can potentially recover / gain performance:

- Improved pattern recognition – reduces hit combinatorics in tracking
- Improved background rejection – reduces track combinatorics when reconstructing decay chains
- Improved PV association – reduced vertex combinatorics

However, must consider impact on (1) pixel size, and (2) radiation hardness

(non-linear scales! – illustration only)

+ extra time information increases required bandwidth
Upgrade II Challenge: 10x particle multiplicity

VELO Upgrade-I performance breaks down at HL-LHC luminosity ($L=2\times10^{34}$ cm$^{-2}$s$^{-1}$)

![Graph showing track efficiency vs. pseudorapidity]

Tracking efficiency reduced to 96% (not so bad)

+ less flat
Upgrade II Challenge: 10x particle multiplicity

VELO Upgrade-I performance breaks down at HL-LHC luminosity ($L=2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$)

- Tracking efficiency reduced to 96% (not so bad)
- + less flat
- **Ghost rate explodes ($\sim2\% \rightarrow 40\%$)**

Adding precise timing to the LHCb Vertex Locator 1 Nov 2017 Mark Williams
Upgrade II Challenge: 10x particle multiplicity

VELO Upgrade-I performance breaks down at HL-LHC luminosity ($L=2\times10^{34}$ cm$^{-2}$s$^{-1}$)

- Tracking efficiency reduced to 96% (not so bad)
- Less flat
- Ghost rate explodes (~2% \rightarrow 40%)
- Spatial resolution degrades due to reduced track-finding performance
Upgrade II Challenge: 10x particle multiplicity

Can recover most performance with modest improvements:

- Smaller pixels (55μm → 27.5μm)
- Thinner silicon (200μm → 100μm)
- Re-optimised pattern recognition

Only simple re-optimisation for this study – likely significantly more gains to be made
Upgrade II Challenge: 10x particle multiplicity

Can recover most performance with modest improvements:
- Smaller pixels (55μm → 27.5μm)
- Thinner silicon (200μm → 100μm)
- Re-optimized pattern recognition

Does this mean that we can live without precise timing?

No!
Upgrade II Challenge: 10x vertex multiplicity

At Upgrade-II luminosity, ~50 visible interactions / crossing

PV separation ~3mm on average, but peaks at very small values (<500μm)

With Upgrade-I detector, PVs start to merge

PV reconstruction recovered with smaller pixels

BUT we start to suffer from PV-track mis-association…
Main modules have two technologies:

- **Small-r:** small pixels, radiation hard, timing information optional
- **Large-r:** larger pixels, fast timing, reduced rad hardness

Starting point: use same z-layout as Upgrade-I
Use similar-sized sensor units (15x15mm² per square)
Upgrade II Challenge: 10x radiation damage

Highly non-linear radiation dose

Upgrade I: Maximum dose of 8×10^{15} 1 MeV n_{eq} cm$^{-2}$ after 50fb$^{-1}$

Upgrade II will see $5-8 \times 10^{16}$ 1 MeV n_{eq} cm$^{-2}$ over course of lifetime

This is beyond the limits of current silicon technology – very important to find a solution
Upgrade II Challenge: 10x radiation damage

Highly non-linear radiation dose

Upgrade I:
Maximum dose of 8×10^{15} 1 MeV n_{eq} cm$^{-2}$ after 50 fb$^{-1}$

Upgrade II will see $5-8 \times 10^{16}$ 1 MeV n_{eq} cm$^{-2}$ over course of lifetime

This is beyond the limits of current silicon technology – very important to find a solution
Upgrade II Challenge: Hit Occupancy

LHCb Simulation
Preliminary
- Pixel Occupancy
- Cluster Occupancy

\[L = 2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \]

Occupancy also falls with \(1/r^2\)

Two-technology approach allows us to loosen requirements on

- pixel size
- radiation hardness

for precision timing planes

IP resolution dominated by first 2 hits

⇒ Spatial hit resolution less important at large-\(r\)
PV mis-association study

Run toy simulation that models the two-technology geometry, and assess PV mis-association rate under different time-hit resolutions.
Use reasonable inputs from full simulation / data / upgrade-II projections

Step 1: Generate pp collisions according to expected \((x, y, z, t, N_{PV})\) distributions

\[
\sigma_{PV}(t) = 250\text{ps}
\]

\[
\sigma_{PV}(z) = 63\text{mm}
\]

In progress… Working with LHC beam experts to identify realistic collision conditions
Step 2: Generate charged particles from each PV, and one b hadron (2-body decay)
PV mis-association study

Step 3: Propagate tracks through detector model, picking-up hits in both types of sensor

- Use time information on hits to assign $t(\text{track})$, and then $t(\text{vertex})$
- Use spatial information to assign $\text{b-hadron trajectory}$
Step 4: Assign PV to B hadron using/excluding time information, and compare results

Just using IP:
- Select PV with lowest B hadron Impact parameter

Example for single event:
In this case, wrong PV was assigned using IP method

Gaussians drawn at each PV point to show significance
PV mis-association study

Step 4: Assign PV to B hadron using/excluding time information, and compare results

Using IP and timing:
- Select PV with lowest:
 $$\sqrt{\frac{(IP)^2}{\sigma_{IP}^2} + \frac{(\delta t)^2}{\sigma_t^2}}$$

For same event, correct PV is now selected [close to (0,0)]

Gaussians drawn at each PV point to show significance
With no time information: PV mis-association rate = 15% (c.f. Upgrade I: ~1%)

With timing:

- **σ(t)[inner detector] = 200ps**
- **No timing for inner detector**

Two different scenarios for the time precision of inner detector:

1. No timing
2. 200ps timing (timepix4?)

Implies having timing in inner detector is not vital

Can get to ~2% mis-association rate with 40ps timing for outer detector
Impact on decay time precision

Incorrect PV association \Rightarrow incorrect decay time measurement

One primary vertex:

Two primary vertices:

unambiguous flight distance

ambiguous flight distance
Incorrect PV association \Rightarrow incorrect decay time measurement

Important for much of core LHCb programme:
- Lifetime measurements
- Precision mixing analyses
- Time-dependent CP violation

Effect will be even stronger for partially-reconstructed decays (e.g. semileptonics) where spatial pointing is distorted, but time is not
Further Studies: Timing for background rejection

With 50x track multiplicity, many more spurious combinations of tracks ⇒ larger contributions from combinatorial backgrounds

With modest per-hit timing, can cleanly reject combinations of tracks from different PVs

- e.g. 200ps inner region, 60ps outer region

⇒ **30ps mean track time resolution**

Will provide significant suppression of backgrounds, and boost sensitivity of many analyses (notably **Rare Decays**)

Full study to be done
Further Studies: Timing for reconstruction

Hit times will be spread over ~few 100 ps
Adding hit time as an extra dimension in the pattern recognition (4D tracking) can improve tracking performance

- **Reduced ghost rate**
- **Faster reconstruction** (very important given LHCb’s ‘offline quality’ trigger approach)
- **Higher efficiency** – can loosen some spatial requirements without increasing ghost rate

Same arguments hold for PV reconstruction – can recover merged / missing PVs and improve spatial resolution.

Full study to be done
Further Studies: Timing for extrapolation

Tracking stations upstream / downstream of magnet are separated by ~5m

Extrapolating tracks through magnet could be problematic in HL-LHC era

• High ghost rates

Adding timing plane in downstream tracker could help
Further Studies: Timing for extrapolation

Tracking stations upstream / downstream of magnet are separated by ~5m

Extrapolating tracks through magnet could be problematic in HL-LHC era

- High ghost rates

Adding timing plane in downstream tracker could help

c.f. ideas proposed by Atlas / CMS to place timing layers in their trackers (e.g. HGTD based on LGAD detectors)

Could also significantly speed-up reconstruction

Full study to be done
Summary and Future Work

HL-LHC: huge **opportunity** for LHCb to search for new physics in precision measurements

Also significant **challenges** – particularly for the VELO

- High track multiplicity, high radiation dose, high pile-up

Two-technology solution ⇒ reduced requirements on pixel size and radiation hardness for **timing technologies** for the outer radial region of the VELO

Even with timing only in the outer region, can reduce PV **mis-association** rate from **15% to ~2%**.

Will also significantly reduce track combinatorics, and hence backgrounds

Now starting to plan research programmes to **identify** and **develop** candidate technologies for both the inner and outer detector.
Possible Technologies: ASICS

Upgrade I will use **VeloPix** technology – based on **Timepix** family of ASICS

- 55µm pixels
- 130 nm technology
- 1 ns timing precision

Timepix3
- + Radiation hard
- + 800 Mhit/s readout
 (10x Timepix3)

VeloPix
- Under validation – all looks good!

Timepix4
- Same 55µm pixels
- 65 nm technology
- ~200 ps timing precision
- 4-sided buttable design

SuperVeloPix?
- Small pixels, timing, high rate, radiation hard, ...

- Reduced pixel size?
- Improved timing precision?
Possible Technologies: Sensors

Low Gain Avalanche Detectors (LGAD)

\[\sigma(t) \approx 35\text{ps}, \text{ degrades with radiation} \]
(current prototypes \(\sim 1\text{mm pads} \))

3D Silicon detectors

New 3DSi trench topologies give more uniform fields – so uniform charge collection rates
⇒ potential to reach <100ps timing
Good radiation hardness
Scalable to smaller pixels (<50\(\mu \)m)