LHCb material reduction impact

Greg Ciezarek,
on behalf of the LHCb collaboration

May 17, 2017
Detector material

- Keeping a low material budget essential for many aspects of performance
 - Track finding efficiency (+ charge asymmetry)
 - Mass resolution (especially electrons)
 - Vertex resolution
- LHCb design went through an extensive reoptimisation in 2003 to reduce detector material TDR
 - Too broad a topic, too early for Upgrade II detector
- Instead, will focus on one troublesome piece of material: VELO RF foil
What the VELO does

- VELO precisely measures the origin trajectories of tracks
 - Primary Vertex (PV) and secondary Vertex (SV) finding + position
 - Track Impact Parameter (IP)
 - Primary tool for background suppression
 - Directly measures physics quantities - lifetimes, missing PT for partial reconstruction
1. Introduction

The RF foil

- Thin, corrugated AlMg$_3$ foil
 - Separates VELO vacuum from primary LHC vacuum
 - Isolates sensors from RF pickup
- Introduces significant material in the worst possible place: right after the interaction point...
Improving RF foil

- RF foil is a huge engineering challenge
 - As thin as possible in a complicated structure, maintaining vacuum tightness
- Considerable work put into thinning methods, some gains for Upgrade I
 - This can only be pushed so far
- Discussions ongoing about alternatives: B. Niccolo, “Beyond the LHCb Phase-1 Upgrade”, Elba, May 2017
 - Most radical option: complete removal
 - Why do we want to do this?
What is combinatorial background

- First background in every heavy flavour measurement - random combinations mimicking the decay final state
- Tracks from PVs
 - Largest, but easiest to remove - impact parameter
 - Currently not a significant problem
- Tracks from mixtures of heavy flavour decays
 - $B\bar{B}$ and $D\bar{D}$ pairs
 - Separation based on geometry
 - Lifetime + boost means pairs are typically separated in Z
 - Currently this is the dominant component
To give a scale for the problem: all dimuons (left) vs $B_{(s)} \rightarrow \mu\mu$ (right)

Huge amount of background rejected

Difficult to properly study a background rejection this large...
Background rejection

• Typical selection variables, with **VELO quantities in bold**
 • Combinatorial background rejection dominated by VELO
 • Benefit several times from improved VELO resolution
 • (* isolation variables also depend on VELO resolution..)
How much worse do things get?

- In upgrade II, we go from a pileup of 1.4 (now) to $\sim 55(!)$
 - Multiple heavy flavour decays per event
- Prompt background vastly increases, but currently subdominant
 - Will this still be the case?
 - IP resolution (+ PV finding efficiency) crucial
- Needs detailed study
2. Combinatorial background

How much worse do things get?

- Overlapping heavy-flavour decays currently our main background
- Naive toy study:
 - PVs spread along Z
 - $B\bar{B}$ and $D\bar{D}$ pairs with exponential lifetimes
 - How many pairs decay with a Z separation below 5mm?
- Overlapping heavy-flavour increases by a factor ~ 3.5 relative to signal
 - Before any improvement in VELO resolution
 - (Or timing...)
 - Tractable!
RF foil removal

- IP resolution at low PT dominated by multiple scattering before 2nd hit
 - Responsible for slope in plot
- Multiple scattering before 2nd hit dominated by RF foil
 - Significant improvement by removing RF foil

Total material: $25.01\% X_0$
Effect of RF foil removal

- Nearly doubles IP resolution at low PT!
- Similar improvements in other quantities - e.g. primary vertex resolution
- How to quantify impact on physics?
 - Combinatorial background relies on multiple quantities (→ detailed simulation) and large samples: not yet done
 - First, toy studies for a simpler case: missing PT resolution
Flight

- Measure B decay, origin positions $\rightarrow B$ momentum vector should point back along this 'flight direction'
 - Can infer unreconstructed momentum transverse to flight direction (p_\perp)
- Construct “Corrected mass” variable $M_{corr} = \sqrt{p_{\perp}^2 + M_{reco}^2} + p_\perp$
 - Dates back to SLD: hep-ex/0202031v1
 - M_{corr} resolution dominated by SV resolution
4. Impact on semileptonics

Vertex resolution in semileptonics

- As with IP resolution, RF foil removal significantly improves secondary vertex resolution (here averaged over PT)
- Use these resolutions to smear MC truth, explore effect on physics sensitivity
Toy measurement

- Template fit used to measure $B_s \rightarrow K^- \mu^+ \nu$ yield, and determine $|V_{ub}|$
 - Perfect resolution(left) vs current VELO (right)
- Generate toys for different RF foil thicknesses
- Signal and background yields kept constant
Impact on semileptons

- RF foil thickness has clear impact on sensitivity
- No RF foil gives 25% gain in effective luminosity from fit resolution alone
 - Increase in background rejection will result in larger gain
- See poster by Iwan Smith
PV association

- As discussed before, timing is needed for good PV association.
- Nonetheless, spatial resolution is important.
- Removing RF foil reduces the wrong association rate by \(\sim 30\% \).
- Needs to be studied together with timing performance.
Jet tagging

- IP resolution also key for b, c jet tagging
 - See talk by Oscar Augusto
RF foil has a highly non-trivial material distribution

We are particularly sensitive to getting this right in the simulation
 - Historically, one of the biggest problems in our simulation

Removing this helps limit our final systematics
Conclusion

- VELO resolution key for controlling backgrounds
- RF foil key limiting factor for VELO resolution
- We want to run without RF foil!
 - For equal background, 25% gain in effective luminosity for semileptonic decays
 - 30% reduction in wrong PV association
- Studies ongoing
 - We’d like to thank CERN RF and Vacuum groups