Vector-boson pair production

Marius Wiesemann

Workshop on the physics of HL-LHC, and perspectives at HE-LHC, CERN (Switzerland), October 30th - November 1st, 2017

VV production at NNLO

- γγ inclusive and fully differential cross section
 [Catani, Cieri, de Florian, Ferrera, Grazzini '12], [Campbell, Ellis, Li, Williams '16]
- **TZ** inclusive cross section [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs '14]; see also: [Heinrich et al. '17]
 - fully differential cross section [Grazzini, Kallweit, Rathlev '15];
- **Zγ** inclusive and fully differential cross section
 [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]; see also: [Campbell et al. '17]
- Wγ inclusive and fully differential cross section
 [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]
- WW inclusive cross section
 [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi '14]
 - fully differential cross section [Grazzini, Kallweit, Pozzorini, Rathlev, MW '15]
- WZ inclusive cross section [Grazzini, Kallweit, Rathlev, MW '16]
 - fully differential cross section [Grazzini, Kallweit, Rathlev, MW '17]

VV production at NNLO

- γγ inclusive and fully differential cross section
 [Catani, Cieri, de Florian, Ferrera, Grazzini '12], [Campbell, Ellis, Li, Williams '16]
- **TZ** inclusive cross section [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathley, Tancredi, Weihs '14]
 - fully differential cross section [Grazzini, Kallweit, Rathlev '15];
- **Zγ** inclusive and fully differential cross section [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]
- Wγ inclusive and fully differential cross section
 [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]
- WW inclusive cross section

 [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathley, Tancredi '14]
 - fully differential cross section [Grazzini, Kallweit, Pozzorini, Rathlev, MW '15]
- WZ inclusive cross section [Grazzini, Kallweit, Rathley, MW '16]
 - fully differential cross section [Grazzini, Kallweit, Rathlev, MW '17]

all done with MATRIX or previous version of the code

We implemented...

The MATRIX framework

[Grazzini, Kallweit, MW]

Amplitudes

OPENLOOPS (COLLIER, CUTTOols, ...)

 $\begin{array}{c} \textbf{Dedicated 2-loop codes} \\ \textbf{(VVamp, GiNaC, Tdhpl}, \dots) \end{array}$

Munich

MUlti-chaNnel Integrator at Swiss (CH) precision

 $q_{
m T}$ subtraction $\iff q_{
m T}$ resummation

MATRIX

Munich Automates qT Subtraction and Resummation to Integrate X-sections.

process	status	comment
$pp \rightarrow \mathbf{Z}/\gamma * (\rightarrow \ell \ell / \nu \nu)$	1	validated analytically + FEWZ
$pp \rightarrow W(\rightarrow \ell \nu)$	√	validated with FEWZ, NNLOjet
рр→Н	√	validated analytically (by SusHi)
pp→γγ	√	validated with 2yNNLO
$pp \rightarrow Z\gamma \rightarrow \ell \ell \gamma$	√	[Grazzini, Kallweit, Rathlev '15]
$pp \rightarrow Z\gamma \rightarrow vv\gamma$	√	[Grazzini, Kallweit, Rathlev '15]
$pp \rightarrow WY \rightarrow \ell VY$	√	[Grazzini, Kallweit, Rathlev '15]
pp→ ZZ	√	[Cascioli et al. '14]
$pp \rightarrow ZZ \rightarrow \ell\ell\ell\ell\ell$	√	[Grazzini, Kallweit, Rathlev '15]
pp→ ZZ →ℓℓℓ'ℓ'	√	[Grazzini, Kallweit, Rathlev '15]
$pp \rightarrow ZZ \rightarrow \ell\ell\nu'\nu'$	√	NEW
pp→ZZ/WW→ℓℓvv	√	NEW
pp→WW	1	[Gehrmann et al. 'I4]
pp→ WW →ℓνℓ'v'	1	[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]
pp→ WZ	1	[Grazzini, Kallweit, Rathlev, MW '16]
$pp \rightarrow WZ \rightarrow \ell \nu \ell \ell$	1	[Grazzini, Kallweit, Rathlev, MW '17]
pp→WZ→ℓ'v'ℓℓ	1	[Grazzini, Kallweit, Rathlev, MW '17]
рр→НН	(√)	not in first public release

MATRIX features on one slide

7

 \circ Colourless 2→I and 2→2 reactions (decays, off-shell effects, spin correlations; previous slide)

physics features:

- NNLO accuracy based on q_T subtraction
- loop-induced gg component part of NNLO cross section (effectively LO accurate)
- © CKM for W-boson production
- essential fiducial cuts, dynamical scales and distributions already pre-defined for each process
- final-state particles directly accessible (for distributions, cuts, scales)
- scale uncertainty estimated automatically estimated (7- or 9-point) with every run
- NEW: automatic extrapolation of q_T-subtraction cut-off to zero (with extrapolation uncertainty)

technical features:

- © Core: C++ code; steered by Python interface (compilation/running/job submission/result collection)
- only requirements: LHAPDF 5 or 6 pre-installed & Python 2.7 with numpy
- Otherwise fully automatic! (download/compilation of external packages; inputs via interface etc.)
- local and cluster support: LSF (Ixplus), HT-Condor (Ixplus), condor, SLURM, Torque/PBS, SGE
 - → missing your favourite cluster? Let us know!
- option to reduce workload (output) on slow file systems
- all relevant references in CITATION.bib (provided with every run)
- comprehensive manual shipped with the code

After unpacking start MATRIX with:

\$\$./matrix

- After unpacking start MATRIX with:
- \$\$./matrix
- Inside the MATRIX compilation shell

lists all process IDs. Select ID, eg:

<<MATRIX-MAKE>> This is the MATRIX process compilation.

|======>> ppeeexex04

======>> list || description pph21 on-shell Higgs production ppz01 p p --> Z >> on-shell Z production ppw01 p p --> W^on-shell W- production with CKM ppwx01 p p --> W^+ on-shell W+ production with CKM p p --> e^- e^+ Z production with decay ppeex02 p p --> v e^- v e^+ >> Z production with decay ppnenex02 >> ppenex02 p p --> e^- v e^+ >> W- production with decay and CKM p p --> e^+ v_e^-W+ production with decay and CKM ppexne02 ppaa02 p p --> gamma gamma gamma gamma production ppeexa03 p p --> e^- e^+ gamma Z gamma production with decay p p --> v e^- v e^+ gamma ppnenexa03 Z gamma production with decay ppenexa03 p p --> e^- v e^+ gamma W- gamma production with decay ppexnea03 p p --> e^+ v_e^- gamma W+ gamma production with decay ppzz02 p p --> Z Z on-shell ZZ production p p --> W^+ W^ppwxw02 on-shell WW production p p --> e^- mu^- e^+ mu^+ ZZ production with decay ppemexmx04 p p --> e^- e^- e^+ e^+ ZZ production with decay p p --> e^- e^+ v mu^- v mu^+ ZZ production with decay ppemxnmnex04 p p --> e^- mu^+ v mu^- v e^+ WW production with decay ppeexnenex04 >> p p --> e^- e^+ v e^- v e^+ >> ZZ/WW production with decay p p --> e^- mu^- e^+ v mu^+ W-Z production with decay ppemexnmx04 p p --> e^- e^- e^+ v e^+ ppeeexnex04 W-Z production with decay p p --> e^- e^+ mu^+ v_mu^ppeexmxnm04 W+Z production with decay p p --> e^- e^+ e^+ v e^-W+Z production with decay

- After unpacking start MATRIX with:
- \$\$./matrix
- Inside the MATRIX compilation shell

- lists all process IDs. Select ID, eg:
- ===>> ppeeexex04
- for pp \rightarrow ZZ \rightarrow 4 ℓ . Confirming with

- the MATRIX usage agreements, the code will automatically start to:
 - dowload/compile of OpenLoops
 - compile of Cln and Ginac
 - compile MATRIX
 - download OpenLoops amplitudes
 - create MATRIX run folder for the process

```
WW production with decay
ppemxnmnex04 >>
                   p p --> e^- mu^+ v_mu^- v_e^+
ppeexnenex04 >>
                   p p --> e^- e^+ v e^- v e^+
                                                        ZZ/WW production with decay
                   p p --> e^- mu^- e^+ v_mu^+
                                                        W-Z production with decay
                                                        W-Z production with decay
                   p p --> e^- e^- e^+ v e^+
ppeeexnex04
                   p p --> e^- e^+ mu^+ v_mu^-
                                                        W+Z production with decay
                   p p --> e^- e^+ e^+ v e^-
ppeexexne04
                                                        W+Z production with decay
|======>> ppeeexex04
<<MATRIX-MAKE>> MATRIX usage agreements:
<<MATRIX-MAKE>> MATRIX is based on several computations, studies and tools from
                various people and groups. When using results obtained by MATRIX
                references in the CITATION.bib file, which is created in the
                result folder with every run.
<<MATRIX-READ>> Do you agree with these terms? Type "y" to agree, or "n" to
                abort the code.
<<MATRIX-MAKE>> This compilation of MATRIX uses directly the code OpenLoops from
                http://openloops.hepforge.org. You have to cite arXiv:1111.5206
                from F. Cascioli, P. Maierhoefer, S. Pozzorini, when using
<<MATRIX-READ>> Do you agree with these terms? Type "y" to agree, or "n" to
                abort the code.
 =====>> y
<<MATRIX-MAKE>> This compilation of MATRIX uses directly the code VVamp from
                http://vvamp.hepforge.org. You have to cite arXiv:1503.04812
                from T. Gehrmann, A. von Manteuffel, L. Tancredi, when using
                results obtained with this installation.
<<MATRIX-READ>> Do you agree with these terms? Type "y" to agree, or "n" to
                abort the code.
 <<MATRIX-MAKE>> You have agreed with all MATRIX usage terms.
<<MATRIX-MAKE>> Starting compilation...
<<MATRIX-MAKE>> Using compiled LHAPDF installation under
                (config/MATRIX configuration)
                path_to_lhapdf=/mnt/shared/lhapdf_install/bin/lhapdf-config
 <<MATRIX-MAKE>> OpenLoops already downloaded and compiled. Remove folder
                /home/wiesemann/different-branch-munich/MATRIX/src-external
                /OpenLoops-install if you want to re-download and re-compile...
<<MATRIX-MAKE>> Cln already compiled. Remove folder /home/wiesemann/different-
                branch-munich/MATRIX/src-external/cln-install if you want to re-
<<MATRIX-MAKE>> Ginac already compiled. Remove folder /home/wiesemann/different-
                branch-munich/MATRIX/src-external/ginac-install if you want to
<<MATRIX-MAKE>> Compiling process <ppeeexex04>, this may take a while...
                (see make.log file to monitor the progress)
 <<MATRIX-MAKE>> OpenLoops ppllll amplitude already downloaded and compiled.
                Checking wether up-to-date...
 <<MATRIX-MAKE>> ...ppllll amplitude already installed and up-to-date.
 <<MATRIX-MAKE>> OpenLoops ppllllj amplitude already downloaded and compiled.
                Checking wether up-to-date...
 <<MATRIX-MAKE>> ...ppllllj amplitude already installed and up-to-date.
<<MATRIX-MAKE>> OpenLoops ppllll2 amplitude already downloaded and compiled.
                Checking wether up-to-date...
<<MATRIX-MAKE>> ...ppllll2 amplitude updated.
<<MATRIX-MAKE>> Creating process folder in "run"-directory: "/home/wiesemann
                /different-branch-munich/MATRIX/run/ppeeexex04_MATRIX"...
 <<MATRIX-INFO>> Process folder successfully created.
<<MATRIX-INFO>> Process generation finished, to go to the run directory type:
                cd /home/wiesemann/different-branch-munich/MATRIX/run/ppeeexex04_MATRIX
 <<MATRIX-INFO>> and start run by typing:
                ./bin/run_process
[wiesemann:~/different-branch-munich/MATRIX]
```

- After changing into the run directory we start the run script
- \$./bin/run_process

- After changing into the run directory we start the run script
- \$./bin/run process
- First, choose a name for the run:

- After changing into the run directory we start the run script
- \$./bin/run_process
- First, choose a name for the run:

The MATRIX run shell has many options, eg, modify input files typing:

```
|===>> parameter
|===>> model
|===>> distribution
```

```
[[wiesemann:~/different-branch-munich/MATRIX/run/ppeeexex04_MATRIX] ./bin/run_process
             MATRIX: A fully-differential NNLO(+NNLL) process library
                                                              Aug 2017
                      Version: 1.0.0.release_candidate4
             Munich -- the MUlti-chaNnel Integrator at swiss (CH) precision --
             Automates qT-subtraction and Resummation to Integrate X-sections
             M. Grazzini
                                                       (grazzini@physik.uzh.ch)
             S. Kallweit
                                                      (stefan.kallweit@cern.ch)
                                                     (marius.wiesemann@cern.ch)
             MATRIX is based on a number of different computations and tools
             from various people and groups. Please acknowledge their efforts
             by citing the list of references which is created with every run.
<<MATRIX-READ>> Type name of folder for this run (has to start with "run_").
                "ENTER" to create and use "run_01". Press TAB or type "list" to
                show existing runs. Type "exit" or "quit" to stop. Any other
                folder will be created.
 ======>> run_my_first_ZZ
<<MATRIX-READ>> Type one of the following commands: ("TAB" for auto-completion)
                         description
help
help <command>
                         Show help message for specific <command>.
                         List available commands again.
list
exit
                         Stop the code.
                         Stop the code.
Input to modify
                         Modify "parameter.dat" input file in editor. Modify "model.dat" input file in editor.
parameter
model
distribution
                         Modify "distribution.dat" input file in editor.
Run-mode to start ||
                         Start cross section computation in standard mode.
                         Start only grid setup phase.
run_grid
run_pre
                         Start only extrapolation (grid must be already done).
run_pre_and_main
                         Start after grid setup (grid must be already done).
run_main
                         Start only main run (other runs must be already done).
                         Start only result combination.
run_results
                         Start only gnuplotting the results.
run_gnuplot
                         Setup the run folder, but not start running.
setup_run
delete_run
                         Remove run folder (including input/log/result).
tar_run
                         Create <run_folder>.tar (including input/log/result).
|=======>> parameter
 ======>> model
 =======>> distribution
```

After changing into the directory we start the r

```
$ ./bin/run_proces
```

First, choose a name for

```
|===>> run_my_fir:
```

The MATRIX run shell options, eg, modify inpu

```
===>> parameter
```

```
| MATRIX: A fully-differential NNLO(+NNLL) process library
 MATRIX input parameter #
#########################
 general run settings
               = pp-ememepep+X # process id
               = 6500.
                             # energy per beam
coll_choice
               = 1
                              # (1) PP collider; (2) PPbar collider
switch_off_shell = 0
                              # switch for effective integration for off-shell Z bosons (eg, Higgs analysis)
# scale settings
               = 91.1876
scale ren
                              # renormalization (muR) scale
scale_fact = 91
dynamic_scale = 0
               = 91.1876
                              # factorization (muF) scale
                              # dynamic ren./fac. scale
                              # 0: fixed scale above
                              # 1: invariant mass (Q) of system (of the colourless final states)
                              # 2: transverse mass (mT^2=Q^2+pT^2) of system (of the colourless final states)
                              # relative factor for central scale (important for dynamic scales)
factor_central_scale = 1
scale_variation = 1
                              # switch for muR/muF uncertainties (0) off; (1) 7-point (default); (2) 9-point va
variation_factor = 2
                              # symmetric variation factor; usually a factor of 2 up and down (default)
# order-dependent run settings
# LO
run_LO
LHAPDF_LO
               = 1
                              # switch for LO cross section (1) on; (0) off
               = NNPDF30_lo_as_0118 # LO LHAPDF set
                              # member of LO PDF set
PDFsubset LO
               = 0
precision_LO
                              # precision of LO cross section
# NLO
run NLO
                              # switch for NLO cross section (1) on; (0) off
LHAPDF_NLO
               = NNPDF30_nlo_as_0118 # NLO LHAPDF set
PDFsubset_NLO
                              # member of NLO PDF set
               = 0
precision NLO
              = 1.e-2
                              # precision of NLO cross section
NLO subtraction_method = 1
                              # switch to use (2) qT subtraction (1) Catani-Seymour at NLO
# NNLO
                              # switch for NNLO cross section (1) on; (0) off
run NNLO
LHAPDF_NNLO
               = NNPDF30_nnlo_as_0118 # NNLO LHAPDF set
                              # member of NNLO PDF set
PDFsubset NNLO = 0
precision_NNLO = 1.e-2
                              # precision of NNLO cross section
loop_induced
                              # switch to turn on (1) and off (0) loop-induced gg channel
  settings for fiducial cuts |
# Jet algorithm
jet_algorithm = 3
                              # (1) Cambridge-Aachen (2) kT (3) anti-kT
jet_R_definition = 0
                              # (0) pseudo-rapidity (1) rapidity
jet_R = 0.4
# Jet cuts
define_pT jet = 25.
                              # requirement on jet transverse momentum (lower cut)
define_eta jet = 4.5
                              # requirement on jet pseudo-rapidity (upper cut)
define_y jet = 1.e99
                              # requirement on jet rapidity (upper cut)
                              # minimal number of observed jets (with cuts above)
n_observed_min jet = 0
 _observed_max jet = 99
                                 maximal number of observed jets (with cuts above)
-UU-:---F1 parameter.dat
                                          Git-release candidate (Fundamental Fld) 8:56AM 4.63
Folding buffer... done
```

- After changing into the run directory we start the run script
- \$./bin/run_process
- First, choose a name for the run:

The MATRIX run shell has many options, eg, modify input files typing:

```
|===>> parameter
|===>> model
|===>> distribution
```

Now we can start the run, type

```
|===>> run
```

```
[[wiesemann:~/different-branch-munich/MATRIX/run/ppeeexex04_MATRIX] ./bin/run_process
             MATRIX: A fully-differential NNLO(+NNLL) process library
                                                                Aug 2017
                       Version: 1.0.0.release_candidate4
             Munich -- the MUlti-chaNnel Integrator at swiss (CH) precision --
              Automates qT-subtraction and Resummation to Integrate X-sections
             M. Grazzini
                                                         (grazzini@physik.uzh.ch)
             S. Kallweit
                                                        (stefan.kallweit@cern.ch)
                                                       (marius.wiesemann@cern.ch)
             MATRIX is based on a number of different computations and tools
             from various people and groups. Please acknowledge their efforts
             by citing the list of references which is created with every run.
<<MATRIX-READ>> Type name of folder for this run (has to start with "run_").
                "ENTER" to create and use "run_01". Press TAB or type "list" to show existing runs. Type "exit" or "quit" to stop. Any other
                 folder will be created.
 =======>> run_my_first_ZZ
<<MATRIX-READ>> Type one of the following commands: ("TAB" for auto-completion)
                          description
help <command>
                          Show help message for specific <command>.
list
                          List available commands again.
exit
                          Stop the code.
                          Stop the code.
Input to modify
                          Modify "parameter.dat" input file in editor. Modify "model.dat" input file in editor.
distribution
                          Modify "distribution.dat" input file in editor.
Run-mode to start ||
                          Start cross section computation in standard mode.
run_grid
                          Start only grid setup phase.
run_pre
                          Start only extrapolation (grid must be already done).
run_pre_and_main
                          Start after grid setup (grid must be already done).
run_main
                          Start only main run (other runs must be already done).
                          Start only result combination.
run_results
                          Start only gnuplotting the results.
run_gnuplot
                          Setup the run folder, but not start running.
setup_run
delete_run
                          Remove run folder (including input/log/result).
tar run
                          Create <run_folder>.tar (including input/log/result).
|=======>> parameter
 ======>> model
 =======>> distribution
 =======>> run
```

- After changing into the run directory we start the run script
- \$./bin/run_process
- First, choose a name for the run:

The MATRIX run shell has many options, eg, modify input files typing:

```
|===>> parameter
|===>> model
```

Now we can start the run, type

```
|===>> run
```

The code goes through all run phases and collects the results at the very end. With default inputs it runs LO with 1% accuracy.

```
<<MATRIX-JOBS>> |
                  2017-10-16 16:33:50 |
                                         Queued: 2 | Running: 0 |
<<MATRIX-JOBS>> |
                  2017-10-16 16:33:55 | Queued: 0 | Running: 2 |
<<MATRIX-JOBS>> |
                  2017-10-16 16:34:00 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>> | 2017-10-16 16:34:00 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-INFO>> All runs successfully finished.
 <<MATRIX-INFO>> Cleaning previous results (result run)...
<<MATRIX-INFO>> Collecting and combining results..
<<MATRIX-JOBS>> | 2017-10-16 16:34:00 | Queued: 2 | Running: 0 | Finished: 0
                  2017-10-16 16:34:05 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
<<MATRIX-JOBS>> |
                  2017-10-16 16:34:05 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>> | 2017-10-16 16:34:05 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-INFO>> Plotting results with gnuplot...
<<MATRIX-INFO>> Trying to plot: pT_lep1_lep2__L0
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
 <<MATRIX-INFO>> Trying to plot: pT_emZ1epZ2__LO
 <<MATRIX-INFO>> Running gnuplot...
 <<MATRIX-INFO>> Plot successfully generated.
 <<MATRIX-INFO>> Trying to plot: pT_ep1__LO
 <MATRIX-INFO>> Running gnuplot...
 <MATRIX-INFO>> Plot successfully generated.
 <MATRIX-INFO>> Trying to plot: pT_lep1__LO
 <<MATRIX-INFO>> Running gnuplot...
 <<MATRIX-INFO>> Plot successfully generated.
 <<MATRIX-INFO>> Trying to plot: m_lep1_lep2__LO
 <<MATRIX-INFO>> Running gnuplot...
 <<MATRIX-INFO>> Plot successfully generated.
 <<MATRIX-INFO>> Trying to plot: dR_em1_ep1__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_lep2__L0
<<MATRIX-INFO>> Running gnuplot..
<<MATRIX-INFO>> Plot successfully generated.
 <<MATRIX-INFO>> Trying to plot: pT_em1__LO
<matrix-INFO>> Running gnuplot...
 <<MATRIX-INFO>> Plot successfully generated.
 <<MATRIX-INFO>> Trying to plot: n_jets__LO
 <<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: m_Z1__L0
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_emZ2epZ1__LO
<MATRIX-INFO>> Running gnuplot..
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: m_Z2__L0
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
 <<MATRIX-INFO>> Combining all pdf files into single file "all_plots.pdf"...
                           Final result for:
p p --> e^- e^- e^+ e^+ @ 13 TeV LHC
<MATRIX-RESULT> 1 separate run was made
                # LO-run
<MATRIX-RESULT> PDF: NNPDF30_lo_as_0118
<MATRIX-RESULT> Total rate (possibly within cuts):
<MATRIX-RESULT> LO:
                         5.815 fb +/- 0.027 fb (muR, muF unc.: +6.3% -7.4%)
<MATRIX-RESULT> All results (including the distributions) can be found in:
<MATRIX-RESULT> /home/wiesemann/different-branch-munich/MATRIX/run/ppeeexex04_MATRIX/resul
[wiesemann:~/different-branch-munich/MATRIX/run/ppeeexex04_MATRIX]
```

pt subtraction master formula:

$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

[Catani, Grazzini '07]

practical implementation:

- subtraction not local
- both terms in squared brackets separately divergent
- introduce lower cut-off r_{cut} on dimensionless quantity $r = p_{T,WW}/m_{WW}$
- $^{\odot}$ use very small r_{cut} value and integrate both terms separately down to $r \geq r_{cut}$
- @ assumption: for $r \le r_{cut}$ terms cancel (true up to power-suppressed terms)
- \bullet numerics forbids arbitrarily small r_{cut} values: use fit towards $r_{cut} \rightarrow 0$ limit
- MATRIX uses extrapolation $r_{cut} \rightarrow 0$ to obtain the final prediction

r_{cut}→0 extrapolation in MATRIX

r_{cut}→0 extrapolation in MATRIX

Physics results

<pre>process (\${process_id})</pre>	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{ m loop} \ (\sigma_{ m loop}/\Delta\sigma_{ m NNLO}^{ m ext})$	$\sigma_{ ext{NNLO}}^{r_{ ext{cut}}}$	$\sigma_{ m NNLO}^{ m extrapolated}$	$K_{ m NLO}$	$K_{ m NNLO}$
pp o H (pph21)	$15.42(0)_{-17\%}^{+22\%} \text{ pb}$	$30.26(1)_{-15\%}^{+20\%} \mathrm{pb}$	_	$39.93(3)_{-10\%}^{+11\%} \mathrm{pb}$	$39.93(3)_{-10\%}^{+11\%} \mathrm{pb}$	+96.2%	+32.0%
$pp o Z \ (t ppz01)$	$43.32(0)_{-13\%}^{+12\%}$ nb	$54.20(1)^{+3.1\%}_{-4.9\%}$ nb	_	$56.01(3)^{+0.84\%}_{-1.1\%}$ nb	$55.99(3)^{+0.84\%}_{-1.1\%}$ nb	+25.1%	+3.31%
$pp o W^- \ ext{(ppw01)}$	$60.15(0)^{+13\%}_{-14\%} \mathrm{nb}$	$75.95(2)^{+3.3\%}_{-5.3\%}$ nb	_	$78.43(3)^{+0.97\%}_{-1.3\%}$ nb	$78.51(11)^{+0.95\%}_{-1.3\%}$ nb	+26.3%	+3.38%
$pp o W^+ \ (exttt{ppwx01})$	$81.28(1)_{-14\%}^{+13\%} \mathrm{nb}$	$102.2(0)^{+3.4\%}_{-5.3\%}$ nb	_	$105.8(1)^{+0.93\%}_{-1.3\%}$ nb	$105.8(1)_{-1.3\%}^{+0.93\%}$ nb	+25.7%	+3.52%
$pp ightarrow e^- e^+ \ (exttt{ppeex02})$	$592.8(1)_{-14\%}^{+14\%} \mathrm{pb}$	$699.7(2)^{+2.9\%}_{-4.5\%} \mathrm{pb}$	_	$728.4(3)^{+0.48\%}_{-0.72\%} \mathrm{pb}$	$732.7(34)^{+0.43\%}_{-0.79\%}$ pb	+18.0%	+4.72%
$pp o u_ear u_e$ (ppnenex02)	$2876(0)_{-13\%}^{+12\%} \mathrm{pb}$	$3585(1)^{+3.0\%}_{-4.9\%} \mathrm{pb}$	_	$3705(2)_{-1.1\%}^{+0.86\%} \text{ pb}$	$3710(2)_{-1.1\%}^{+0.85\%} \text{ pb}$	+24.6%	+3.48%
$pp o e^- ar{ u}_e \ (exttt{ppenex02})$	$2973(0)^{+14\%}_{-15\%} \mathrm{pb}$	$3673(1)^{+3.0\%}_{-5.2\%}\mathrm{pb}$	_	$3773(2)^{+0.89\%}_{-0.94\%} \mathrm{pb}$	$3767(8)_{-0.95\%}^{+0.92\%} \mathrm{pb}$	+23.6%	+2.55%
$pp o e^+ u_e$ (ppexne02)	$3964(0)^{+14\%}_{-14\%}\mathrm{pb}$	$4855(1)^{+3.0\%}_{-5.1\%} \mathrm{pb}$	_	$4986(2)^{+0.88\%}_{-0.95\%} \mathrm{pb}$	$4986(3)_{-0.95\%}^{+0.88\%} \mathrm{pb}$	+22.5%	+2.70%
$pp o \gamma \gamma \ (exttt{ppaa02})$	$5592(1)_{-11\%}^{+10\%}$ fb	$25.75(1)^{+8.8\%}_{-7.5\%} \mathrm{pb}$	$2534(1)_{-17\%}^{+24\%}$ fb (17.4%)	$40.86(2)^{+8.7\%}_{-7.2\%} \mathrm{pb}$	$40.28(30)^{+8.7\%}_{-7.0\%} \mathrm{pb}$	+361%	+56.4%
$pp ightarrow e^- e^+ \gamma$ (ppeexa03)	$1469(0)_{-12\%}^{+12\%}$ fb	$2119(1)^{+2.9\%}_{-4.6\%}$ fb	$16.02(1)_{-18\%}^{+24\%}$ fb (8.14%)	$2326(1)_{-1.3\%}^{+1.2\%}$ fb	$2316(5)_{-1.2\%}^{+1.1\%}$ fb	+44.3%	+9.29%
$pp ightarrow u_e ar{ u}_e \gamma \ ext{(ppnenexa03)}$	$63.61(1)^{+2.7\%}_{-3.5\%}$ fb	$98.75(2)_{-2.7\%}^{+3.3\%}$ fb	$2.559(2)_{-19\%}^{+26\%}$ fb (17.3%)	$114.7(1)_{-2.6\%}^{+3.2\%}$ fb	$113.5(6)^{+2.9\%}_{-2.4\%}$ fb	+55.2%	+15.0%
$pp o e^-ar u_e\gamma$ (ppenexa03)	$726.1(1)_{-12\%}^{+11\%} \text{fb}$	$1850(1)_{-5.3\%}^{+6.6\%}$ fb	_	$2286(1)_{-3.7\%}^{+4.0\%}$ fb	$2256(15)^{+3.7\%}_{-3.5\%}\mathrm{fb}$	+155%	+22.0%
$pp o e^+ u_e \gamma$ (ppexnea03)	$861.7(1)_{-11\%}^{+10\%} \text{fb}$	$2187(1)_{-5.3\%}^{+6.6\%}$ fb	-	$2707(3)^{+4.1\%}_{-3.8\%}$ fb	$2671(35)^{+3.8\%}_{-3.6\%}\mathrm{fb}$	+154%	+22.1%
$pp o ZZ \ (exttt{ppzz02})$	$9845(1)_{-6.3\%}^{+5.2\%} \mathrm{fb}$	$14.10(0)^{+2.9\%}_{-2.4\%} \text{ pb}$	$1361(1)_{-19\%}^{+25\%}$ fb (52.9%)	$16.68(1)^{+3.2\%}_{-2.6\%} \mathrm{pb}$	$16.67(1)^{+3.2\%}_{-2.6\%} \mathrm{pb}$	+43.3%	+18.2%
$\begin{array}{c} pp \rightarrow W^+W^- \\ (\mathtt{ppwxw02}) \end{array}$	$66.64(1)^{+5.7\%}_{-6.7\%} \mathrm{pb}$	$103.2(0)^{+3.9\%}_{-3.1\%}$ pb	$4091(3)_{-19\%}^{+27\%}$ fb (29.5%)	$117.1(1)^{+2.5\%}_{-2.2\%} \mathrm{pb}$	$117.1(1)^{+2.5\%}_{-2.2\%} \mathrm{pb}$	+54.9%	+13.4%
$pp \rightarrow e^{-}\mu^{-}e^{+}\mu^{+}$ (ppemexmx04)	$11.34(0)_{-7.3\%}^{+6.3\%}$ fb	$16.87(0)_{-2.5\%}^{+3.0\%}$ fb	$1.971(1)_{-18\%}^{+25\%} \text{fb}$ (57.6%)	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	+48.8%	+20.3%
$pp \rightarrow e^-e^-e^+e^+$ (ppeeexex04)	$5.781(1)_{-7.4\%}^{+6.3\%}$ fb	$8.623(3)_{-2.5\%}^{+3.1\%}$ fb	$0.9941(4)_{-18\%}^{+25\%}$ fb (56.9%)	$10.37(1)_{-3.0\%}^{+3.5\%}$ fb	$10.37(1)_{-3.0\%}^{+3.5\%}$ fb	+49.2%	+20.2%
$\begin{array}{l} pp \rightarrow e^- e^+ \nu_\mu \bar{\nu}_\mu \\ ({\tt ppeexnmnmx04}) \end{array}$	$22.34(0)^{+5.3\%}_{-6.4\%}$ fb	$33.90(1)_{-2.7\%}^{+3.3\%}$ fb	$3.212(1)_{-19\%}^{+25\%}$ fb (49.6%)	$40.39(2)_{-2.8\%}^{+3.5\%}$ fb	$40.38(2)_{-2.8\%}^{+3.5\%}$ fb	+51.7%	+19.1%
$pp o e^- \mu^+ u_\mu \bar{ u}_e$ (ppemxnmnex04)	$232.9(0)_{-7.6\%}^{+6.6\%}$ fb	$236.1(1)^{+2.8\%}_{-2.4\%}$ fb	$26.93(1)_{-19\%}^{+27\%}$ fb (94.3%)	$264.7(1)_{-1.4\%}^{+2.2\%}$ fb	$264.6(2)_{-1.4\%}^{+2.2\%}$ fb	+1.34%	+12.1%
$pp \rightarrow e^- e^+ \nu_e \bar{\nu}_e$ (ppeexnenex04)	$115.0(0)_{-7.3\%}^{+6.3\%}$ fb	$203.4(1)_{-3.8\%}^{+4.7\%}$ fb	$12.62(1)_{-19\%}^{+26\%}$ fb (33.8%)	$240.8(1)_{-3.0\%}^{+3.4\%}$ fb	$240.7(1)_{-3.0\%}^{+3.4\%}$ fb	+76.9%	+18.4%
$pp ightarrow e^- \mu^- e^+ \bar{ u}_{\mu}$ (ppemexnmx04)	$11.50(0)^{+5.7\%}_{-6.8\%}$ fb	$23.55(1)_{-4.5\%}^{+5.5\%}$ fb	_	$26.15(1)^{+2.2\%}_{-2.1\%}$ fb	$26.15(2)_{-2.1\%}^{+2.3\%}$ fb	+105%	+11.1%
$pp \rightarrow e^{-}e^{-}e^{+}\bar{\nu}_{e}$ $(ppeeexnex04)$	$11.53(0)_{-6.8\%}^{+5.7\%}$ fb	$23.63(1)^{+5.5\%}_{-4.5\%}$ fb	_	$26.26(1)_{-2.1\%}^{+2.3\%}$ fb	$26.26(1)_{-2.1\%}^{+2.3\%}$ fb	+105%	+11.1%
$pp \rightarrow e^-e^+\mu^+\nu_{\mu}$ (ppeexmxnm04)	$17.33(0)^{+5.3\%}_{-6.3\%}$ fb	$34.13(1)^{+5.3\%}_{-4.3\%}$ fb	_	$37.75(2)_{-2.0\%}^{+2.3\%}$ fb	$37.76(2)_{-2.0\%}^{+2.2\%}$ fb	+97.0%	+10.6%
$pp \to e^- e^+ e^+ \nu_e$ (ppeexexne04)	$17.37(0)_{-6.3\%}^{+5.3\%}$ fb	$34.20(1)^{+5.3\%}_{-4.3\%}$ fb		$37.85(2)_{-2.0\%}^{+2.2\%}$ fb	$37.86(2)_{-2.0\%}^{+2.2\%}$ fb	+96.9%	+10.7%

MATRIX reference predictions

[Grazzini, Kallweit, MW]

<pre>process (\${process_id})</pre>	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{ m loop} \ (\sigma_{ m loop}/\Delta\sigma_{ m NNLO}^{ m ext})$	$\sigma_{ m NNLO}^{r_{ m cut}}$	$\sigma_{ m NNLO}^{ m extrapolated}$	$K_{ m NLO}$	$K_{ m NNLO}$	
$pp ightarrow \gamma \gamma \ ext{(ppaa02)}$	$5.592(1)_{-11\%}^{+10\%} \mathrm{pb}$	$25.75(1)^{+8.8\%}_{-7.5\%} \mathrm{pb}$	$2534(1)^{+24\%}_{-17\%}$ fb (17.4%)	$40.86(2)_{-7.2\%}^{+8.7\%} \mathrm{pb}$	$40.28(30)^{+8.7\%}_{-7.0\%} \mathrm{pb}$	+361%	+56.4% 3	TeV
$pp ightarrow \gamma \gamma \ ext{(ppaa02)}$	$10.34(0)^{+15\%}_{-15\%} \mathrm{pb}$	$54.63(5)_{-11\%}^{+9.9\%} \text{ pb}$	$6701(17)_{-17\%}^{+24\%}$ fb (17.4%)	$88.76(30)^{+9.1\%}_{-7.4\%} \text{ pb}$	$88.45(51)_{-7.4\%}^{+9.0\%} \text{ pb}$	+428%	+61.9% 27	TeV
$pp o ZZ \ (t ppzz02)$	$9.845(1)_{-6.3\%}^{+5.2\%} \text{ pb}$	$14.10(0)^{+2.9\%}_{-2.4\%} \text{ pb}$	$1361(1)_{-19\%}^{+25\%}$ fb (52.9%)	$16.68(1)_{-2.6\%}^{+3.2\%} \mathrm{pb}$	$16.67(1)^{+3.2\%}_{-2.6\%} \mathrm{pb}$	+43.3%	+18.2% 3	TeV
$pp o ZZ \ ext{(ppzz02)}$	$23.59(1)_{-11\%}^{+10\%} \mathrm{pb}$	$35.56(2)_{-4.1\%}^{+3.2\%} \text{ pb}$	$4821(11)_{-18\%}^{+25\%}$ fb (52.9%)	$44.36(17)^{+4.2\%}_{-3.4\%} \text{ pb}$	$44.46(33)^{+4.3\%}_{-3.5\%} \mathrm{pb}$	+50.7%	+25.0%27	TeV
$pp ightarrow W^+W^- \ ext{(ppwxw02)}$	$66.64(1)^{+5.7\%}_{-6.7\%} \mathrm{pb}$	$103.2(0)^{+3.9\%}_{-3.1\%} \mathrm{pb}$	$4091(3)_{-19\%}^{+27\%}$ fb (29.5%)	$117.1(1)^{+2.5\%}_{-2.2\%} \mathrm{pb}$	$117.1(1)^{+2.5\%}_{-2.2\%} \text{ pb}$	+54.9%	+13.4% 3	TeV
$pp ightarrow W^+W^- \ ext{(ppwxw02)}$	$152.5(0)_{-11\%}^{+10\%} \mathrm{pb}$	$254.7(2)_{-4.6\%}^{+4.4\%} \text{ pb}$	$13.87(3)_{-19\%}^{+27\%} \text{ pb}$ (29.5%)	$300.4(1.1)^{+3.3\%}_{-3.0\%} \text{ pb}$	$299.8(1.3)^{+3.3\%}_{-2.9\%} \mathrm{pb}$	+67.0%	+17.7% 27	TeV
$pp \rightarrow e^-\mu^-e^+\mu^+$ (ppemexmx04)	$11.34(0)^{+6.3\%}_{-7.3\%}$ fb	$16.87(0)^{+3.0\%}_{-2.5\%}$ fb	$1.971(1)_{-18\%}^{+25\%}$ fb (57.6%)	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	+48.8%	+20.3% 3	TeV
$pp \rightarrow e^-\mu^-e^+\mu^+$ (ppemexmx04)	$22.49(1)_{-12\%}^{+11\%}$ fb	$35.78(3)_{-4.5\%}^{+3.4\%}$ fb	$6.140(20)_{-18\%}^{+25\%}$ fb (57.6%)	$45.78(21)_{-3.8\%}^{+4.6\%}$ fb	$45.28(83)^{+4.4\%}_{-3.6\%}$ fb	+59.1%	+26.6%27	TeV
$pp \to e^- \mu^+ \nu_\mu \bar{\nu}_e$ (ppemxnmnex04)	$232.9(0)^{+6.6\%}_{-7.6\%}$ fb	$236.1(1)^{+2.8\%}_{-2.4\%}$ fb	$26.93(1)_{-19\%}^{+27\%}$ fb (94.3%)	$264.7(1)_{-1.4\%}^{+2.2\%}$ fb	$264.6(2)_{-1.4\%}^{+2.2\%}$ fb	+1.34%	+12.1% 3	TeV
$pp ightarrow e^- \mu^+ u_\mu ar{ u}_e \ { m (ppemxnmnex04)}$	$439.0(1)_{-12\%}^{+11\%}$ fb	$429.0(4)_{-3.2\%}^{+3.5\%}$ fb	$79.19(9)_{-19\%}^{+27\%}$ fb (94.3%)	$507.0(1.4)^{+3.2\%}_{-2.1\%}$ fb	$507.5(1.9)^{+3.3\%}_{-2.1\%}$ fb	-2.27%	+18.3%27	TeV
$pp \rightarrow e^{-}\mu^{-}e^{+}\bar{\nu}_{\mu}$ (ppemexnmx04)	$11.50(0)^{+5.7\%}_{-6.8\%}$ fb	$23.55(1)^{+5.5\%}_{-4.5\%}$ fb	_	$26.15(1)_{-2.1\%}^{+2.2\%}$ fb	$26.15(2)_{-2.1\%}^{+2.3\%}$ fb	+105%	+11.1% 3	TeV
$pp ightarrow e^- \mu^- e^+ ar{ u}_{\mu} \ (ext{ppemexnmx04})$	$23.18(4)_{11.5\%}^{10.9\%}$ fb	$53.21(9)_{-5.3\%}^{+6.1\%}$ fb	—	$62.18(65)^{+2.2\%}_{-3.2\%}$ fb	$62.07(84)^{+2.3\%}_{-3.1\%}$ fb	+129.5%	+16.6%27	TeV

<pre>process (\${process_id})</pre>	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{ m loop} \ (\sigma_{ m loop}/\Delta\sigma_{ m NNLO}^{ m ext})$	$\sigma_{ ext{NNLO}}^{r_{ ext{cut}}}$	$\sigma_{ m NNLO}^{ m extrapolated}$	$K_{ m NLO}$	$K_{ m NNLO}$	
$pp ightarrow \gamma \gamma$ (pread)	$5.592(1)_{-11\%}^{+10\%} \mathrm{pb}$	$25.75(1)^{+8.8\%}_{-7.5\%} \mathrm{pb}$	$2534(1)_{-17\%}^{+24\%}$ fb (17.4%)	$40.86(2)_{-7.2\%}^{+8.7\%} \mathrm{pb}$	40.28(30) ^{+8.7%} _{-7.0%} pb	+361% ~2.2 f	+56.4% 3	TeV
$ ho ightarrow \gamma \gamma$	$10.34(0)_{-15\%}^{+15\%} \mathrm{pb}$	$54.63(5)_{-11\%}^{+9.9\%} \text{ pb}$	$6701(17)^{+24\%}_{-17\%}$ fb (17.4%)	$88.76(30)^{+9.1\%}_{-7.4\%} \text{ pb}$	88.45(51) ^{+9.0%} _{-7.4%} pb	+428%	+61.9% 27	TeV
pp o ZZ (ppzz02)	$9.845(1)_{-6.3\%}^{+5.2\%} \mathrm{pb}$	$14.10(0)^{+2.9\%}_{-2.4\%} \text{ pb}$	$1361(1)_{-19\%}^{+25\%}$ fb (52.9%)	$16.68(1)_{-2.6\%}^{+3.2\%} \mathrm{pb}$	$16.67(1)_{-2.6\%}^{+3.2\%} \text{ pb}$	+43.3%	+18.2%	TeV
pp o ZZ (ppzz02)	$23.59(1)_{-11\%}^{+10\%} \mathrm{pb}$	$35.56(2)_{-4.1\%}^{+3.2\%} \mathrm{pb}$	$4821(11)^{+25\%}_{-18\%}$ fb (52.9%)	$44.36(17)^{+4.2\%}_{-3.4\%} \text{ pb}$	$44.46(33)^{+4.3\%}_{-3.5\%} \mathrm{pb}$	+50.7%	+25.0% 27	TeV
$pp \to W^+W^-$ (ppwxw02)	$66.64(1)^{+5.7\%}_{-6.7\%} \mathrm{pb}$	$103.2(0)^{+3.9\%}_{-3.1\%} \text{ pb}$	$4091(3)_{-19\%}^{+27\%} \text{ fb}$ (29.5%)	$117.1(1)^{+2.5\%}_{-2.2\%} \mathrm{pb}$	$117.1(1)^{+2.5\%}_{-2.2\%} \text{ pb}$	+54.9%	+13.4% 3	TeV
$pp o W^+W^- \ { m (ppwxw02)}$	$152.5(0)_{-11\%}^{+10\%} \mathrm{pb}$	$254.7(2)_{-4.6\%}^{+4.4\%} \text{ pb}$	$13.87(3)_{-19\%}^{+27\%} \text{ pb}$ (29.5%)	$300.4(1.1)^{+3.3\%}_{-3.0\%} \text{ pb}$	$299.8(1.3)^{+3.3\%}_{-2.9\%} \mathrm{pb}$	+67.0%	+17.7% 27	TeV
$pp \rightarrow e^-\mu^-e^+\mu^+$ (ppemexmx04)	$11.34(0)^{+6.3\%}_{-7.3\%}$ fb	$16.87(0)_{-2.5\%}^{+3.0\%}$ fb	$1.971(1)^{+25\%}_{-18\%} \text{fb}$ (57.6%)	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	+48.8%	+20.3%	TeV
$pp \rightarrow e^-\mu^-e^+\mu^+$ (ppemexmx04)	$22.49(1)_{-12\%}^{+11\%}$ fb	$35.78(3)^{+3.4\%}_{-4.5\%}$ fb	$6.140(20)_{-18\%}^{+25\%}$ fb (57.6%)	$45.78(21)_{-3.8\%}^{+4.6\%}$ fb	$45.28(83)^{+4.4\%}_{-3.6\%}$ fb	+59.1%	+26.6% 27	TeV
$pp \rightarrow e^- \mu^+ \nu_\mu \bar{\nu}_e$ (ppemxnmnex04)	$232.9(0)_{-7.6\%}^{+6.6\%}$ fb	$236.1(1)^{+2.8\%}_{-2.4\%}$ fb	$26.93(1)_{-19\%}^{+27\%}$ fb (94.3%)	$264.7(1)_{-1.4\%}^{+2.2\%}$ fb	$264.6(2)_{-1.4\%}^{+2.2\%}$ fb	+1.34%	+12.1% 3	TeV
$pp \rightarrow e^- \mu^+ \nu_\mu \bar{\nu}_e$ (ppemxnmnex04)	$439.0(1)_{-12\%}^{+11\%}$ fb	$429.0(4)_{-3.2\%}^{+3.5\%}$ fb	$79.19(9)_{-19\%}^{+27\%}$ fb (94.3%)	$507.0(1.4)^{+3.2\%}_{-2.1\%}$ fb	$507.5(1.9)^{+3.3\%}_{-2.1\%}$ fb	-2.27%	+18.3%27	TeV
$pp \to e^- \mu^- e^+ \bar{\nu}_{\mu}$ (ppemexnmx04)	$11.50(0)_{-6.8\%}^{+5.7\%}$ fb	$23.55(1)_{-4.5\%}^{+5.5\%}$ fb		$26.15(1)_{-2.1\%}^{+2.2\%}$ fb	$26.15(2)^{+2.3\%}_{-2.1\%}$ fb	+105%	+11.1%	TeV
$pp ightarrow e^- \mu^- e^+ \bar{ u}_\mu \ { m (ppemexnmx04)}$	$23.18(4)_{11.5\%}^{10.9\%}$ fb	$53.21(9)_{-5.3\%}^{+6.1\%}$ fb		$62.18(65)^{+2.2\%}_{-3.2\%}$ fb	$62.07(84)^{+2.3\%}_{-3.1\%}$ fb	+129.5%	+16.6% 27	TeV

<pre>process (\${process_id})</pre>	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{ m loop} \ (\sigma_{ m loop}/\Delta\sigma_{ m NNLO}^{ m ext})$	$\sigma_{ ext{NNLO}}^{r_{ ext{cut}}}$	$\sigma_{ m NNLO}^{ m extrapolated}$	$K_{ m NLO}$	$K_{ m NNLO}$	
$pp ightarrow \gamma \gamma$ (preact)	$5.592(1)_{-11\%}^{+10\%} \mathrm{pb}$	$25.75(1)^{+8.8\%}_{-7.5\%} \mathrm{pb}$	$2534(1)^{+24\%}_{-17\%}$ fb (17.4%)	$40.86(2)_{-7.2\%}^{+8.7\%} \mathrm{pb}$	$40.28(30)^{+8.7\%}_{-7.0\%} \mathrm{pb}$	+361% ~2.2 f	+56.4% 3	TeV
$ ho ightarrow \gamma \gamma$ (ppaa02)	$10.34(0)_{-15\%}^{+15\%} \mathrm{pb}$	$54.63(5)_{-11\%}^{+9.9\%} \text{ pb}$	$6701(17)_{-17\%}^{+24\%}$ fb (17.4%)	$88.76(30)^{+9.1\%}_{-7.4\%} \text{ pb}$	$88.45(51)_{-7.4\%}^{+9.0\%} \text{ pb}$		+61.9% 27	TeV
pp ightarrow ZZ	79.845(1) ^{+5.2%} _{-6.3%} pb	$14.10(0)^{+2.9\%}_{-2.4\%} \text{ pb}$	$1361(1)_{-19\%}^{+25\%}$ fb (52.9%)	$16.68(1)_{-2.6\%}^{+3.2\%} \mathrm{pb}$	$16.67(1)_{-2.6\%}^{+3.2\%} \text{ pb}$	+43.3% ~2 7 f	+18.2% 3	TeV
(ppzz02)	$23.59(1)_{-11\%}^{+10\%} \mathrm{pb}$		$4821(11)_{-18\%}^{+25\%}$ fb (52.9%)	$44.36(17)_{-3.4\%}^{+4.2\%} \text{ pb}$	44.46(33) ^{+4.3%} _{-3.5%} pb		+25.0% 27	
$pp \to W^+W^-$ (ppwxw02)	$66.64(1)^{+5.7\%}_{-6.7\%} \mathrm{pb}$	$103.2(0)^{+3.9\%}_{-3.1\%} \text{ pb}$	$4091(3)_{-19\%}^{+27\%}$ fb (29.5%)	$117.1(1)^{+2.5\%}_{-2.2\%} \mathrm{pb}$	$117.1(1)^{+2.5\%}_{-2.2\%} \text{ pb}$	+54.9%	+13.4%	TeV
$pp ightarrow W^+W^- \ ext{(ppwxw02)}$	$152.5(0)_{-11\%}^{+10\%} \mathrm{pb}$	$254.7(2)_{-4.6\%}^{+4.4\%} \mathrm{pb}$	$13.87(3)_{-19\%}^{+27\%} \text{ pb}$ (29.5%)	$300.4(1.1)^{+3.3\%}_{-3.0\%} \mathrm{pb}$	$299.8(1.3)^{+3.3\%}_{-2.9\%} \mathrm{pb}$	+67.0%	+17.7% 27	TeV
$pp \rightarrow e^-\mu^-e^+\mu^+$ (ppemexmx04)	$11.34(0)^{+6.3\%}_{-7.3\%}$ fb	$16.87(0)^{+3.0\%}_{-2.5\%}$ fb	$1.971(1)_{-18\%}^{+25\%}$ fb (57.6%)	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	+48.8%	+20.3%	TeV
$pp \rightarrow e^-\mu^-e^+\mu^+$ (ppemexmx04)	$22.49(1)_{-12\%}^{+11\%}$ fb	$35.78(3)_{-4.5\%}^{+3.4\%}$ fb	$6.140(20)_{-18\%}^{+25\%}$ fb (57.6%)	$45.78(21)_{-3.8\%}^{+4.6\%}$ fb	$45.28(83)^{+4.4\%}_{-3.6\%}$ fb	+59.1%	+26.6% 27	TeV
$pp \rightarrow e^- \mu^+ \nu_\mu \bar{\nu}_e$ (ppemxnmnex04)	$232.9(0)^{+6.6\%}_{-7.6\%}$ fb	$236.1(1)^{+2.8\%}_{-2.4\%}$ fb	$26.93(1)_{-19\%}^{+27\%}$ fb (94.3%)	$264.7(1)_{-1.4\%}^{+2.2\%}$ fb	$264.6(2)_{-1.4\%}^{+2.2\%}$ fb	+1.34%	+12.1% 3	TeV
$pp \rightarrow e^- \mu^+ \nu_\mu \bar{\nu}_e \label{eq:ppmxnmnex04}$ (ppemxnmnex04)	$439.0(1)_{-12\%}^{+11\%}$ fb	$429.0(4)_{-3.2\%}^{+3.5\%}$ fb	$79.19(9)_{-19\%}^{+27\%}$ fb (94.3%)	$507.0(1.4)_{-2.1\%}^{+3.2\%}$ fb	$507.5(1.9)_{-2.1\%}^{+3.3\%}$ fb	-2.27%	+18.3% 27	TeV
$pp \rightarrow e^{-}\mu^{-}e^{+}\bar{\nu}_{\mu}$ (ppemexnmx04)	$11.50(0)_{-6.8\%}^{+5.7\%}$ fb	$23.55(1)_{-4.5\%}^{+5.5\%}$ fb		$26.15(1)^{+2.2\%}_{-2.1\%}$ fb	$26.15(2)^{+2.3\%}_{-2.1\%}$ fb	+105%	+11.1%	TeV
$pp ightarrow e^- \mu^- e^+ ar{ u}_{\mu} \ (ext{ppemexnmx04})$	$23.18(4)_{11.5\%}^{10.9\%}$ fb	$53.21(9)_{-5.3\%}^{+6.1\%}$ fb	_	$62.18(65)^{+2.2\%}_{-3.2\%}$ fb	$62.07(84)^{+2.3\%}_{-3.1\%}$ fb	+129.5%	+16.6%27	TeV

<pre>process (\${process_id})</pre>	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{ m loop} \ (\sigma_{ m loop}/\Delta\sigma_{ m NNLO}^{ m ext})$	$\sigma_{ ext{NNLO}}^{r_{ ext{cut}}}$	$\sigma_{ m NNLO}^{ m extrapolated}$	$K_{ m NLO}$	$K_{ m NNLO}$	
$pp ightarrow \gamma \gamma$ (prime)	$5.592(1)_{-11\%}^{+10\%} \mathrm{pb}$	$25.75(1)^{+8.8\%}_{-7.5\%} \mathrm{pb}$	$2534(1)^{+24\%}_{-17\%}$ fb (17.4%)	$40.86(2)_{-7.2\%}^{+8.7\%} \mathrm{pb}$	40.28(30) ^{+8.7%} _{-7.0%} pb	+361% ~2.2 f	+56.4% 3	TeV
$ ho ightarrow \gamma \gamma$ (ppaa02)	$10.34(0)_{-15\%}^{+15\%} \mathrm{pb}$	$54.63(5)_{-11\%}^{+9.9\%} \text{ pb}$	$6701(17)_{-17\%}^{+24\%}$ fb (17.4%)	$88.76(30)^{+9.1\%}_{-7.4\%} \text{ pb}$	$88.45(51)_{-7.4\%}^{+9.0\%} \text{ pb}$		+61.9% 27	TeV
pp o ZZ	$9.845(1)_{-6.3\%}^{+5.2\%} \text{pb}$	$14.10(0)^{+2.9\%}_{-2.4\%} \text{ pb}$	$1361(1)_{-19\%}^{+25\%}$ fb (52.9%)	$16.68(1)_{-2.6\%}^{+3.2\%} \mathrm{pb}$	$16.67(1)_{-2.6\%}^{+3.2\%} \text{ pb}$	+43.3%	+18.2% 3	TeV
(ppzz02)	$23.59(1)_{-11\%}^{+10\%} \text{ pb}$	$35.56(2)_{-4.1\%}^{+3.2\%} \mathrm{pb}$	$4821(11)_{-18\%}^{+25\%}$ fb (52.9%)	$44.36(17)^{+4.2\%}_{-3.4\%} \text{ pb}$	44.46(33) ^{+4.3%} _{-3.5%} pb		+25.0% 27	
$pp \rightarrow W^+W^-$ (pp v02	66.64(1) ^{±5.7%} pb	$103.2(0)_{-3.1\%}^{+3.9\%} \text{ pb}$	$4091(3)^{+27\%}_{-19\%} \text{ fb}$ (29.5%)	$117.1(1)^{+2.5\%}_{-2.2\%} \mathrm{pb}$	$117.1(1)^{+2.5\%}_{-2.2\%} \text{ pb}$	+54.9%	+13.4% 3 actor +17.7% 27	TeV
$p_{I} \hspace{0.5cm} W \hspace{0.5cm} \mathcal{V}^{-} \hspace{0.5cm} \\ \hspace{0.5cm} $	$52.5(1)^{+10\%}_{-11\%} \text{ pb}$	103.2(0) ^{+3.9%} _{-3.1%} pb n she 254.7(2) ^{+4.4%} _{-4.6%} pb	$12.87(3)_{-19\%}^{+27\%} \text{ pb}$ (29.5%)	$300.4(1.1)^{+3.3\%}_{-3.0\%} \text{ pb}$	$299.8(1.3)^{+3.3\%}_{-2.9\%} \text{ pb}$	+67.0%	+17.7% 27	TeV
$pp \rightarrow e^-\mu^-e^+\mu^+$ (ppemexmx04)	$11.34(0)^{+6.3\%}_{-7.3\%}$ fb	$16.87(0)^{+3.0\%}_{-2.5\%}$ fb	$1.971(1)^{+25\%}_{-18\%}$ fb (57.6%)	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	+48.8%	+20.3%	TeV
$pp \rightarrow e^-\mu^-e^+\mu^+$ (ppemexmx04)	$22.49(1)_{-12\%}^{+11\%}$ fb	$35.78(3)_{-4.5\%}^{+3.4\%}$ fb	$6.140(20)_{-18\%}^{+25\%}$ fb (57.6%)	$45.78(21)_{-3.8\%}^{+4.6\%}$ fb	$45.28(83)^{+4.4\%}_{-3.6\%}$ fb	+59.1%	+26.6% 27	TeV
$pp \rightarrow e^- \mu^+ \nu_\mu \bar{\nu}_e$ (ppemxnmnex04)	$232.9(0)_{-7.6\%}^{+6.6\%}$ fb	$236.1(1)^{+2.8\%}_{-2.4\%}$ fb	$26.93(1)_{-19\%}^{+27\%}$ fb (94.3%)	$264.7(1)^{+2.2\%}_{-1.4\%}$ fb	$264.6(2)^{+2.2\%}_{-1.4\%}$ fb	+1.34%	+12.1% 3	TeV
$pp \rightarrow e^- \mu^+ \nu_\mu \bar{\nu}_e$ (ppemxnmnex04)	$439.0(1)_{-12\%}^{+11\%}$ fb	$429.0(4)_{-3.2\%}^{+3.5\%}$ fb	$79.19(9)_{-19\%}^{+27\%}$ fb (94.3%)	$507.0(1.4)_{-2.1\%}^{+3.2\%}$ fb	$507.5(1.9)_{-2.1\%}^{+3.3\%}$ fb	-2.27%	+18.3% 27	TeV
$pp \to e^- \mu^- e^+ \bar{\nu}_{\mu}$ (ppemexnmx04)	$11.50(0)_{-6.8\%}^{+5.7\%}$ fb	$23.55(1)_{-4.5\%}^{+5.5\%}$ fb		$26.15(1)_{-2.1\%}^{+2.2\%}$ fb	$26.15(2)^{+2.3\%}_{-2.1\%}$ fb	+105%	+11.1%	TeV
$pp ightarrow e^- \mu^- e^+ ar{ u}_{\mu} \ (ext{ppemexnmx04})$	$23.18(4)_{11.5\%}^{10.9\%}$ fb	$53.21(9)_{-5.3\%}^{+6.1\%}$ fb	_	$62.18(65)^{+2.2\%}_{-3.2\%}$ fb	$62.07(84)^{+2.3\%}_{-3.1\%}$ fb	+129.5%	+16.6% 27	TeV

process (\${process_id})	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{ m loop} \ (\sigma_{ m loop}/\Delta\sigma_{ m NNLO}^{ m ext})$	$\sigma_{ ext{NNLO}}^{r_{ ext{cut}}}$	$\sigma_{ m NNLO}^{ m extrapolated}$	$K_{ m NLO}$	$K_{ m NNLO}$	
$pp ightarrow \gamma \gamma$ (preact)	$5.592(1)_{-11\%}^{+10\%} \mathrm{pb}$	$25.75(1)^{+8.8\%}_{-7.5\%} \mathrm{pb}$	$2534(1)_{-17\%}^{+24\%}$ fb (17.4%)	$40.86(2)_{-7.2\%}^{+8.7\%} \mathrm{pb}$	40.28(30) ^{+8.7%} _{-7.0%} pb	+361% ~2 ? •	+56.4% 3	TeV
$ ho ightarrow \gamma \gamma$ (ppaa02)	$10.34(0)_{-15\%}^{+15\%} \mathrm{pb}$	$54.63(5)_{-11\%}^{+9.9\%} \text{ pb}$	$6701(17)_{-17\%}^{+24\%}$ fb (17.4%)	$88.76(30)^{+9.1\%}_{-7.4\%} \text{ pb}$	$88.45(51)_{-7.4\%}^{+9.0\%}$ pb		+61.9% 27	TeV
pp o ZZ	$9.845(1)_{-6.3\%}^{+5.2\%} \text{ pb}$	$14.10(0)^{+2.9\%}_{-2.4\%} \mathrm{pb}$	$1361(1)_{-19\%}^{+25\%}$ fb (52.9%)	$16.68(1)_{-2.6\%}^{+3.2\%} \mathrm{pb}$	$16.67(1)_{-2.6\%}^{+3.2\%} \text{ pb}$	+43.3% ~ 7 1	+18.2% 3	TeV
(ppzz02)	$23.59(1)_{-11\%}^{+10\%} \mathrm{pb}$	$35.56(2)_{-4.1\%}^{+3.2\%} \mathrm{pb}$	$4821(11)_{-18\%}^{+25\%}$ fb (52.9%)	$44.36(17)^{+4.2\%}_{-3.4\%} \text{ pb}$	$44.46(33)_{-3.5\%}^{+4.3\%}$ pb		+25.0% 27	
$pp o W^+W^-$	66.64(1) ^{+5.7%} _{.7%} pb	$103.2(0)^{+3.9\%}_{-3.1\%} \mathrm{pb}$	$4091(3)_{-19\%}^{+27\%}$ fb (29.5%)	$117.1(1)^{+2.5\%}_{-2.2\%} \mathrm{pb}$	$117.1(1)_{-2.2\%}^{+2.5\%} \text{ pb}$	+54.9%	+13.4% 3	TeV
$p_{I} = W = V^{-}$ (ppwxw02)	-52.5 $)_{-11\%}^{+10\%}$ pb	254.7(2) ^{+4.4%} _{-4.6%} pb	$12.87(3)_{-19\%}^{+27\%} \text{ pb}$ (29.5%)	$300.4(1.1)^{+3.3\%}_{-3.0\%} \text{ pb}$	$299.8(1.3)^{+3.3\%}_{-2.9\%} \text{ pb}$	+67.0%	factor +17.7% 27	TeV
$pp \rightarrow e^-\mu^-e^+\mu^+$	11.34(0) ^{+6.3%} _{-7.3%} fb	$16.87(0)_{-2.5\%}^{+3.0\%}$ fb	$1.971(1)^{+25\%}_{-18\%}$ fb (57.6%)	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	+48.8% ~2.3	+20.3% 3	TeV
pp (ppemexmx04)	$22.49(1)_{-12\%}^{+11\%}$ fb	$35.78(3)_{-4.5\%}^{+5.4\%}$ fb	$6.140(20)_{-18\%}^{+25\%}$ fb (57.6%)	$45.78(21)_{-3.8\%}^{+4.6\%}$ fb	$45.28(83)_{-3.6\%}^{+4.4\%}$ fb	+59.1%	+26.6% 27	TeV
$pp \to e^- \mu^+ \nu_\mu \bar{\nu}_e$ (ppemxnmnex04)	$232.9(0)^{+6.6\%}_{-7.6\%}$ fb	$236.1(1)^{+2.8\%}_{-2.4\%}$ fb	$26.93(1)_{-19\%}^{+27\%}$ fb (94.3%)	$264.7(1)^{+2.2\%}_{-1.4\%} \mathrm{fb}$	$264.6(2)_{-1.4\%}^{+2.2\%}$ fb	+1.34%	+12.1%	TeV
$pp \to e^- \mu^+ \nu_\mu \bar{\nu}_e$ (ppemxnmnex04)	$439.0(1)_{-12\%}^{+11\%}$ fb	$429.0(4)_{-3.2\%}^{+3.5\%}$ fb	$79.19(9)_{-19\%}^{+27\%}$ fb (94.3%)	$507.0(1.4)^{+3.2\%}_{-2.1\%}$ fb	$507.5(1.9)^{+3.3\%}_{-2.1\%}$ fb	-2.27%	+18.3% 27	TeV
$pp \to e^- \mu^- e^+ \bar{\nu}_{\mu}$ (ppemexnmx04)	$11.50(0)_{-6.8\%}^{+5.7\%}$ fb	$23.55(1)_{-4.5\%}^{+5.5\%}$ fb		$26.15(1)^{+2.2\%}_{-2.1\%}$ fb	$26.15(2)^{+2.3\%}_{-2.1\%}$ fb	+105%	+11.1%	TeV
$pp \rightarrow e^{-}\mu^{-}e^{+}\bar{\nu}_{\mu}$ (ppemexnmx04)	$23.18(4)_{11.5\%}^{10.9\%}$ fb	$53.21(9)_{-5.3\%}^{+6.1\%}$ fb		$62.18(65)^{+2.2\%}_{-3.2\%}$ fb	$62.07(84)^{+2.3\%}_{-3.1\%}$ fb	+129.5%	+16.6% 27	TeV

<pre>process (\${process_id})</pre>	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{ m loop} \ (\sigma_{ m loop}/\Delta\sigma_{ m NNLO}^{ m ext})$	$\sigma_{ m NNLO}^{r_{ m cut}}$	$\sigma_{ m NNLO}^{ m extrapolated}$	$K_{ m NLO}$	$K_{ m NNLO}$	
$pp ightarrow \gamma \gamma$ (prime)	$5.592(1)_{-11\%}^{+10\%} \mathrm{pb}$	$25.75(1)^{+8.8\%}_{-7.5\%} \mathrm{pb}$	$2534(1)^{+24\%}_{-17\%}$ fb (17.4%)	$40.86(2)_{-7.2\%}^{+8.7\%} \mathrm{pb}$	$40.28(30)^{+8.7\%}_{-7.0\%} \text{ pb}$	+361%	+56.4% 3	TeV
$ ho ightarrow \gamma \gamma$	$10.34(0)^{+15\%}_{-15\%} \mathrm{pb}$	$54.63(5)_{-11\%}^{+9.9\%} \text{ pb}$	$6701(17)_{-17\%}^{+24\%}$ fb (17.4%)	$88.76(30)^{+9.1\%}_{-7.4\%} \text{ pb}$	$88.45(51)_{-7.4\%}^{+9.0\%} \text{ pb}$		+61.9% 27	TeV
pp o ZZ	79.845(1) ^{+5.2%} _{-6.3%} pb	$14.10(0)^{+2.9\%}_{-2.4\%} \text{ pb}$	$1361(1)_{-19\%}^{+25\%}$ fb (52.9%)	$16.68(1)_{-2.6\%}^{+3.2\%} \mathrm{pb}$	$16.67(1)_{-2.6\%}^{+3.2\%} \text{ pb}$	+43.3%	+18.2% 3	TeV
(ppzz02)	$23.59(1)_{-11\%}^{+10\%} \mathrm{pb}$		$4821(11)_{-18\%}^{+25\%}$ fb (52.9%)	$44.36(17)^{+4.2\%}_{-3.4\%} \text{ pb}$	44.46(33) ^{+4.3%} _{-3.5%} pb	+50.7%	+25.0% 27	
$pp \rightarrow W^+W^-$ (pp v02	66.64(1) ^{+5.7%} pb	$103.2(0)^{+3.9\%}_{-3.1\%} \text{ pb}$	$4091(3)_{-19\%}^{+27\%} \text{ fb}$ (29.5%)	$117.1(1)^{+2.5\%}_{-2.2\%} \mathrm{pb}$	$117.1(1)^{+2.5\%}_{-2.2\%} \text{ pb}$	+54.9%	+13.4%	TeV
$p_{I\!\!\!/} W V^- \ (ext{ppwxw02})$	-52.5 $)_{-11\%}^{+10\%}$ pb	254.7(2) ^{+4.4%} _{-4.6%} pb	$12.87(3)_{-19\%}^{+27\%} \text{ pb}$ (29.5%)	$300.4(1.1)^{+3.3\%}_{-3.0\%} \text{ pb}$	$299.8(1.3)^{+3.3\%}_{-2.9\%} \text{ pb}$	+67.0%	factor +17.7% 27	TeV
$pp o e^-\mu^-e^+\mu^+$	$11.34(0)^{+6.3\%}_{-7.3\%}$ fb	16.87(0) ^{+3.0%} _{-2.5%} fb	$1.971(1)_{-18\%}^{+25\%}$ fb (57.6%)	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	$20.30(1)_{-2.9\%}^{+3.5\%}$ fb	+48.8%	+20.3%	TeV
(ppemexmx04)	$2\overline{2}.49(1)_{-12\%}^{+11\%}$ fb	$35.78(3)_{-4.5\%}^{+5.4\%}$ fb	$6.140(20)_{-18\%}^{+25\%}$ fb (57.6%)	$45.78(21)_{-3.8\%}^{+4.6\%}$ fb	$45.28(83)_{-3.6\%}^{+4.4\%}$ fb	+59.1%	+26.6% 27	TeV
$pp ightarrow e^- \mu^+ u_\mu ar{ u}_e$ (em ne 4)	232-9(0) ^{+6.6%} _{.6%} fb	$236.1(1)^{+2.8\%}_{-2.4\%}$ fb	26.93(1) $^{+27\%}_{-19\%}$ fb (94.3%) 79.19(9) $^{+27\%}_{-19\%}$ fb	$264.7(1)_{-1.4\%}^{+2.2\%}$ fb	$264.6(2)_{-1.4\%}^{+2.2\%}$ fb	+1.34%	+12.1%	TeV
$pp e^- / \mu \bar{\nu}_e$ (ppemxnmnex04)	$439.0(1)_{-12\%}^{+11\%}$ fb	$429.0(4)_{-3.2\%}^{+3.5\%}$ fb	$79.19(9)_{-19\%}^{+27\%}$ fb (94.3%)	$507.0(1.4)^{+3.2\%}_{-2.1\%}$ fb	$264.6(2)_{-1.4\%}^{+2.2\%}$ fb $507.5(1.9)_{-2.1\%}^{+3.3\%}$ fb	~1.9 1 −2.27%	+18.3% 27	TeV
$pp \to e^-\mu^- e^+ \bar{\nu}_{\mu}$ (ppemexnmx04)	$11.50(0)_{-6.8\%}^{+5.7\%}$ fb	$23.55(1)_{-4.5\%}^{+5.5\%}$ fb		$26.15(1)_{-2.1\%}^{+2.2\%}$ fb	$26.15(2)_{-2.1\%}^{+2.3\%}$ fb	+105%	+11.1%	3TeV
$pp ightarrow e^- \mu^- e^+ ar{ u}_{\mu} \ ext{(ppemexnmx04)}$	$23.18(4)_{11.5\%}^{10.9\%}$ fb	$53.21(9)_{-5.3\%}^{+6.1\%}$ fb	_	$62.18(65)^{+2.2\%}_{-3.2\%}$ fb	$62.07(84)^{+2.3\%}_{-3.1\%}$ fb	+129.5%	+16.6%27	TeV

<pre>process (\${process_id})</pre>	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{ m loop} \ (\sigma_{ m loop}/\Delta\sigma_{ m NNLO}^{ m ext})$	$\sigma_{ m NNLO}^{r_{ m cut}}$	$\sigma_{ m NNLO}^{ m extrapolated}$	$K_{ m NLO}$	$K_{ m NNLO}$	
$pp ightarrow \gamma \gamma$ (pr.1ac.)	$5.592(1)_{-11\%}^{+10\%} \mathrm{pb}$	$25.75(1)^{+8.8\%}_{-7.5\%} \mathrm{pb}$	$2534(1)_{-17\%}^{+24\%}$ fb (17.4%)	$40.86(2)_{-7.2\%}^{+8.7\%} \mathrm{pb}$	$40.28(30)^{+8.7\%}_{-7.0\%}$ pb	+361%	+56.4% 3	TeV
$ ho ightarrow \gamma \gamma$ (ppaa02)	$10.34(0)_{-15\%}^{+15\%} \mathrm{pb}$	$54.63(5)_{-11\%}^{+9.9\%} \text{ pb}$	$6701(17)_{-17\%}^{+24\%}$ fb (17.4%)	$88.76(30)^{+9.1\%}_{-7.4\%} \text{ pb}$	$88.45(51)^{+9.0\%}_{-7.4\%} \text{ pb}$		+61.9% 27	TeV
pp o ZZ	9.845(1) ^{+5.2%} _{-6.3%} pb	$14.10(0)^{+2.9\%}_{-2.4\%} \mathrm{pb}$	$1361(1)_{-19\%}^{+25\%}$ fb (52.9%)	$16.68(1)_{-2.6\%}^{+3.2\%} \mathrm{pb}$	$16.67(1)^{+3.2\%}_{-2.6\%} \text{ pb}$	+43.3%	+18.2% 3	TeV
(ppzz02)		$35.56(2)_{-4.1\%}^{+3.2\%} \text{ pb}$	$4821(11)_{-18\%}^{+25\%}$ fb (52.9%)	$44.36(17)^{+4.2\%}_{-3.4\%} \text{ pb}$	44.46(33) ^{+4.3%} _{-3.5%} pb	+50.7%	+25.0% 27	TeV
$pp o W^+W^-$	66.64(1) ^{+5.7%} pb	$103.2(0)^{+3.9\%}_{-3.1\%} \mathrm{pb}$	$4091(3)^{+27\%}_{-19\%} \text{ fb}$ (29.5%)	$117.1(1)^{+2.5\%}_{-2.2\%} \text{ pb}$	$117.1(1)^{+2.5\%}_{-2.2\%} \text{ pb}$	+54.9%	+13.4% 3	TeV
p_{I} W V^{-} $(ext{ppwxw02})$	$-52.5(-)^{+10\%}_{-11\%} \mathrm{pb}$	$254.7(2)_{-4.6\%}^{+4.4\%} \text{ pb}$	(29.5%) $12.87(3)_{-19\%}^{+27\%} \text{ pb}$ (29.5%)	$300.4(1.1)^{+3.3\%}_{-3.0\%} \text{ pb}$	$299.8(1.3)^{+3.3\%}_{-2.9\%} \text{ pb}$	+67.0%	factor +17.7% 27	TeV
$pp \rightarrow e^-\mu^-e^+\mu^+$	v 11.34(0) ^{+6.3%} _{-7.3%} fb	$16.87(0)^{+3.0\%}_{-2.5\%}$ fb	$1.971(1)^{+25\%}_{-18\%}$ fb (57.6%)	$20.30(1)^{+3.5\%}_{-2.9\%}$ fb	$20.30(1)^{+3.5\%}_{-2.9\%}$ fb	+48.8%	+20.3% 3	TeV
$\frac{pp}{(\text{ppemexmx04})}$	$22.49(1)_{-12\%}^{+11\%}$ fb	$35.78(3)_{-4.5\%}^{+3.4\%}$ fb	$6.140(20)_{-18\%}^{+25\%}$ fb (57.6%)	$45.78(21)_{-3.8\%}^{+4.6\%}$ fb	$45.28(83)_{-3.6\%}^{+4.4\%}$ fb	+59.1%		TeV
$pp ightarrow e^- \mu^+ u_\mu ar{ u}_e$ (em ne 4)	232-9(0) ^{+6.6%} fb	$236.1(1)^{+2.8\%}_{-2.4\%}$ fb	$26.93(1)_{-19\%}^{+27\%}$ fb (94.3%)	$264.7(1)_{-1.4\%}^{+2.2\%}$ fb	$264.6(2)_{-1.4\%}^{+2.2\%}$ fb	+1.34%	+12.1% 3	TeV
$pp e^- \mu \bar{\nu}_e \ ({\tt ppemxnmnex04})$	$439.0 (1)_{-12\%}^{+11\%}$ fb	236.1(1) $^{+2.8\%}_{-2.4\%}$ fb ff she 429.0(4) $^{+3.5\%}_{-3.2\%}$ fb	$79.19(9)_{-19\%}^{+27\%}$ fb (94.3%)	$507.0(1.4)^{+3.2\%}_{-2.1\%}$ fb	$264.6(2)_{-1.4\%}^{+2.2\%}$ fb $507.5(1.9)_{-2.1\%}^{+3.3\%}$ fb	~1.91 -2.27%	+18.3% 27	TeV
$pp ightarrow e^- \mu^- e^+ ar{ u}_{\mu}$ (em mx)	$^{11.59}(0)^{+5.7\%}_{-6.8\%} \text{fb}$	$23.55(1)_{-4.5\%}^{+5.5\%}$ fb	_	$26.15(1)_{-2.1\%}^{+2.2\%} \mathrm{fb}$	$26.15(2)_{-2.1\%}^{+2.3\%}$ fb	+105%	+11.1%	TeV
$pp \leftarrow \bar{\nu}_{\mu} + \bar{\nu}_{\mu}$ (ppemexnmx04)	$25.13(4)_{11.5\%}^{10.9\%}$ fb	$53.21(9)_{-5.3\%}^{+6.1\%} \text{fb}$	_	$62.18(65)^{+2.2\%}_{-3.2\%}$ fb	$62.07(84)_{-3.1\%}^{+2.3\%}$ fb	~∠.4 1 +129.5%	+11.1% 3 actor +16.6% 27	TeV

Inclusive diboson results: NNLO vs data

[Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs '14]

[Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi '14]

 $\sigma[pb]$

 $\frac{4.6}{\text{fb}} \quad \frac{4.9}{\text{fb}}$

60

[Grazzini, Kallweit, Rathlev, MW '16]

 $\frac{3.2}{\text{fb}}$ $\frac{2.3}{\text{fb}}$

 $3.16 \quad 2.3$

20.3 19.4

fb

Inclusive diboson results: NNLO vs data

24

[ATLAS '16]

[CMS '16]

[ATLAS '17]

measured and predicted fiducial cross sections (36.1 fb⁻¹)

Channel	Measurement [fb]	Prediction [fb]
4e	$13.7^{+1.1}_{-1.0}$ [± 0.9 (stat.) ± 0.4 (syst.) $^{+0.5}_{-0.4}$ (lumi.)]	$10.9^{+0.5}_{-0.4}$
$2e2\mu$	$20.9^{+1.4}_{-1.3}$ [± 1.0 (stat.) ±0.6 (syst.) $^{+0.7}_{-0.6}$ (lumi.)]	$21.2^{+0.9}_{-0.8}$
4μ	$11.5^{+0.9}_{-0.9}$ [± 0.7 (stat.) ±0.4 (syst.) ±0.4 (lumi.)]	$10.9^{+0.5}_{-0.4}$
Combined	$46.2^{+2.5}_{-2.3}$ [± 1.5 (stat.) $^{+1.2}_{-1.1}$ (syst.) $^{+1.6}_{-1.4}$ (lumi.)]	$42.9_{-1.5}^{+1.9}$

prediction: NNLO by MATRIX

with global factor 0.95 for NLO EW [Biedermann et al. '16]

and gg-channel times 1.67 [Caola et al. '15]

and 2.5% from EW-ZZjj generated with Sherpa

[ATLAS '17]

measured and predicted fidu (36.1 fb^{-1})

~ 3.25% at 36.1 fb-1

0.35% at 3 ab-1

Channel	Measurement [fb]	I I Cuicuon [10]
4e	$13.7^{+1.1}_{-1.0}$ [± 0.9 (stat.) ± 0.4 (syst.) $^{+0.5}_{-0.4}$ (lumi.)] $20.9^{+1.4}_{-1.3}$ [± 1.0 (stat.) ± 0.6 (syst.) $^{+0.7}_{-0.6}$ (lumi.)] $11.5^{+0.9}_{-0.9}$ [± 0.7 (stat.) ± 0.4 (syst.) ± 0.4 (lumi.)]	$10.9^{+0.5}_{-0.4}$
$2e2\mu$	$20.9^{+1.4}_{-1.3}$ [± 1.0 (stat.) ±0.6 (syst.) $^{+0.7}_{-0.6}$ (lumi.)]	$21.2^{+0.9}_{-0.8}$
4μ	$11.5^{+0.9}_{-0.9}$ [± 0.7 (stat.) ±6.4 (syst.) ±0.4 (lumi.)]	$10.9^{+0.5}_{-0.4}$
Combined	$46.2^{+2.5}_{-2.3}$ [± 1.5 (stat.) $^{+1.2}_{-1.1}$ (syst.) $^{+1.6}_{-1.4}$ (lumi.)]	$42.9_{-1.5}^{+1.9}$

prediction: NNLO by MATRIX

with global factor 0.95 for NLO EW [Biedermann et al. '16] and gg-channel times 1.67 [Caola et al. '15]

and 2.5% from EW-ZZjj generated with Sherpa

26

[ATLAS '17]

[ATLAS '17]

13 TeV

27 TeV

13 TeV, 3 ab-1

27 TeV, 15 ab-1

13 TeV, 3 ab-1

27 TeV, 15 ab-1

3 I

27 TeV, 15 ab-1

[Grazzini, Kallweit, Rathlev, MW '17]

SM measurements

ATLAS	(8 -	TeV):
--------------	------	------------	-----------

channel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS} \ [{ m fb}]$
$\mu^{\pm}e^{+}e^{-}$	18 32(0)+2.3%	$32.76(1)_{-4.1\%}^{+5.4\%}$	35 53(2)+1.8%	$36.3 \pm 5.4\%(\text{stat}) \pm 2.6\%(\text{syst}) \pm 2.2\%(\text{lumi})$
$e^{\pm}\mu^{+}\mu^{-}$	$10.92(0)_{-3.2\%}$	32.70(1) _{-4.1} %	$30.00(2)_{-1.9\%}$	$35.7 \pm 5.3\%(\text{stat}) \pm 3.7\%(\text{syst}) \pm 2.2\%(\text{lumi})$
$e^{\pm}e^{+}e^{-}$	18 37(0)+2.3%	$32.85(1)_{-4.1\%}^{+5.4\%}$	35 64(2)+1.8%	$38.1 \pm 6.2\% (\mathrm{stat}) \pm 4.5\% (\mathrm{syst}) \pm 2.2\% (\mathrm{lumi})$
$\mu^{\pm}\mu^{+}\mu^{-}$	$10.97(0)_{-3.2\%}$	32.00(1) _{-4.1} %	$50.04(2)_{-1.9\%}$	$33.3 \pm 4.7\%(\text{stat}) \pm 2.5\%(\text{syst}) \pm 2.2\%(\text{lumi})$
combined	$18.35(0)^{+2.3\%}_{-3.2\%}$	$32.81(1)^{+5.4\%}_{-4.1\%}$	$35.59(2)_{-1.9\%}^{+1.8\%}$	$35.1 \pm 2.7\%(\text{stat}) \pm 2.4\%(\text{syst}) \pm 2.2\%(\text{lumi})$

ATLAS (13 TeV):

channel	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]	σ_{NNLO} [fb]	$\sigma_{ m ATLAS} \; [m fb]$
$\mu^{\pm}e^{+}e^{-}$	28 83(0)+5.4%	57 60(1)+5.4%	$63.93(3)^{+2.3\%}_{-2.1\%}$	$55.1 \pm 11.1\%(\text{stat}) \pm 5.1\%(\text{syst}) \pm 2.4\%(\text{lumi})$
$e^{\pm}\mu^{+}\mu^{-}$	$20.05(0)_{-6.5\%}$	$57.09(1)_{-4.3\%}$		$75.2 \pm 9.5\% (\mathrm{stat}) \pm 5.3\% (\mathrm{syst}) \pm 2.3\% (\mathrm{lumi})$
$e^{\pm}e^{+}e^{-}$	$28.90(0)^{+5.4\%}_{-6.5\%}$	$57.84(1)_{-4.3\%}^{+5.4\%}$	$64.09(3)_{-2.1\%}^{+2.2\%}$	$50.5 \pm 14.2\%(\text{stat}) \pm 10.6\%(\text{syst}) \pm 2.4\%(\text{lumi})$
$\mu^{\pm}\mu^{+}\mu^{-}$				$63.6 \pm 8.9\%(\text{stat}) \pm 4.1\%(\text{syst}) \pm 2.3\%(\text{lumi})$
combined	$28.86(0)_{-6.5\%}^{+5.4\%}$	$57.76(1)_{-4.3\%}^{+5.4\%}$	$64.01(3)_{-2.1\%}^{+2.3\%}$	$63.2 \pm 5.2\%(\text{stat}) \pm 4.1\%(\text{syst}) \pm 2.4\%(\text{lumi})$

CMS (13 TeV):

channel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{\mathrm{CMS}} \; [\mathrm{fb}]$
combined	$148.4(0)^{+5.4\%}_{-6.4\%}$	$301.4(1)_{-4.5\%}^{+5.5\%}$	$334.3(2)^{+2.3\%}_{-2.1\%}$	$258 \pm 8.1\%(\text{stat})^{+7.4\%}_{-7.7\%}(\text{syst}) \pm 3.1(\text{lumi})$

[Grazzini, Kallweit, Rathlev, MW '17]

SM measurements

ATLAS (8	ΓeV)	
----------	------	--

channel	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS}$ [fb]
$\mu^{\pm}e^{+}e^{-}$	$18.32(0)_{-3.2\%}^{+2.3\%}$ $32.76(1)_{-4.1}^{+5.4}$	32 76(1)+5.4%	25 52(2)+1.8%	$36.3 \pm 5.4\% (\text{stat}) \pm 2.6\% (\text{syst}) \pm 2.2\% (\text{lumi})$
$e^{\pm}\mu^{+}\mu^{-}$	$10.32(0)_{-3.2\%}$	$32.70(1)_{-4.1\%}$	$30.00(2)_{-1.9\%}$	$35.7 \pm 5.3\%(\text{stat}) \pm 3.7\%(\text{syst}) \pm 2.2\%(\text{lumi})$
$e^{\pm}e^{+}e^{-}$	$18.37(0)^{+2.3\%}_{-3.2\%}$	$32.85(1)_{-4.1\%}^{+5.4\%}$	$35.64(2)_{-1.9\%}^{+1.8\%}$	$38.1 \pm 6.2\%(\text{stat}) \pm 4.5\%(\text{syst}) \pm 2.2\%(\text{lumi})$
$\mu^{\pm}\mu^{+}\mu^{-}$				$33.3 \pm 4.7\%(\text{stat}) \pm 2.5\%(\text{syst}) \pm 2.2\%(\text{lumi})$
combined	$18.35(0)^{+2.3\%}_{-3.2\%}$	$32.81(1)_{-4.1\%}^{+5.4\%}$	$35.59(2)_{-1.9\%}^{+1.8\%}$	$35.1 \pm 2.7\%(\text{stat}) \pm 2.4\%(\text{syst}) \pm 2.2\%(\text{lumi})$

pertec	t agreemen	t at	NNLO
--------	------------	------	------

ATLAS	(13	TeV)):

chan	nel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	σ_{NNLO} [fb]	$\sigma_{ m ATLAS} \; [m fb]$		
$\mu^{\pm}e^{+}$		28 83(0)+5.4%	$57.69(1)_{-4.3\%}^{+5.4\%}$	(2,02/2)+2.3%	$55.1 \pm 11.1\%(\text{stat}) \pm 5.1\%(\text{syst}) \pm 2.4\%(\text{lumi})$		
$e^{\pm}\mu^{+}$	μ^-	$26.69(0)_{-6.5\%}$		$01.09(1)_{-4.3\%}$ $03.93(3)_{-2.1\%}$	$7_{-6.5\%}$ $37.09(1)_{-4.3\%}$ $03.93(3)_{-2.1\%}$ 75.2	$75.2 \pm 9.5\% (\mathrm{stat}) \pm 5.3\% (\mathrm{syst}) \pm 2.3\% (\mathrm{lumi})$	
$e^{\pm}e^{+}$		20,00(0)+5.4%	$57.84(1)_{-4.3\%}^{+5.4\%}$	64.00(2)+2.2%	$50.5 \pm 14.2\%(\text{stat}) \pm 10.6\%(\text{syst}) \pm 2.4\%(\text{lumi})$		
$\mu^{\pm}\mu^{+}$	μ^-	$26.90(0)_{-6.5\%}$		$91.04(1)_{-4.3\%}$	$97.04(1)_{-4.3\%}$	$04.09(3)_{-2.1\%}$	$04.09(3)_{-2.1\%}$
combi	ned	$28.86(0)_{-6.5\%}^{+5.4\%}$	$57.76(1)_{-4.3\%}^{+5.4\%}$	$64.01(3)^{+2.3\%}_{-2.1\%}$	$63.2 \pm 5.2\%(\text{stat}) \pm 4.1\%(\text{syst}) \pm 2.4\%(\text{lumi})$		

CMS (13 TeV):

channel	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m CMS} \ [{ m fb}]$
combined	$148.4(0)^{+5.4\%}_{-6.4\%}$	$301.4(1)_{-4.5\%}^{+5.5\%}$	$334.3(2)^{+2.3\%}_{-2.1\%}$	$258 \pm 8.1\%(\text{stat})^{+7.4\%}_{-7.7\%}(\text{syst}) \pm 3.1(\text{lumi})$

[Grazzini, Kallweit, Rathlev, MW '17]

SM measurements

ATLAS	(8 7	TeV)):
_			, -

channel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS}$ [fb]	
$\mu^{\pm}e^{+}e^{-}$	19 22(0)+2.3%	22 76(1)+5.4%	$35.53(2)_{-1.9\%}^{+1.8\%}$	25 52(2)+1.8%	$36.3 \pm 5.4\%(\text{stat}) \pm 2.6\%(\text{syst}) \pm 2.2\%(\text{lumi})$
$e^{\pm}\mu^{+}\mu^{-}$	$10.02(0)_{-3.2\%}$	32.70(1) _{-4.1} %	$33.93(2)_{-1.9\%}$	$35.7 \pm 5.3\% (\mathrm{stat}) \pm 3.7\% (\mathrm{syst}) \pm 2.2\% (\mathrm{lumi})$	
$e^{\pm}e^{+}e^{-}$	$18.37(0)^{+2.3\%}$ $32.85(1)^{+5.4\%}$	$35.64(2)_{-1.9\%}^{+1.8\%}$	$38.1 \pm 6.2\% (\mathrm{stat}) \pm 4.5\% (\mathrm{syst}) \pm 2.2\% (\mathrm{lumi})$		
$\mu^{\pm}\mu^{+}\mu^{-}$			$33.3 \pm 4.7\%(\text{stat}) \pm 2.5\%(\text{syst}) \pm 2.2\%(\text{lumi})$		
combined	$18.35(0)^{+2.3\%}_{-3.2\%}$	$32.81(1)^{+5.4\%}_{-4.1\%}$	$35.59(2)_{-1.9\%}^{+1.8\%}$	$35.1 \pm 2.7\%(\text{stat}) \pm 2.4\%(\text{syst}) \pm 2.2\%(\text{lumi})$	

pertect	t agreement	t at NNLO

ATLAS ((13	TeV):

ATI	LAS	<i>(</i> 13	TeV)):
		(15		•

perfect agreement at	NNL	0
portout agrounding at	••••	

CMS (13 TeV):

channel	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS}$ [fb]		
$\mu^{\pm}e^{+}e^{-}$	28 83(0)+5.4%	$57.69(1)_{-4.3\%}^{+5.4\%}$	63 03(3)+2.3%	$55.1 \pm 11.1\%(\text{stat}) \pm 5.1\%(\text{syst}) \pm 2.4\%(\text{lumi})$		
$e^{\pm}\mu^{+}\mu^{-}$	$20.09(0)_{-6.5\%}$	$37.09(1)_{-4.3\%}$	$(05.95(5)_{-2.1\%}$.3% 03.93(3) _{-2.1%}	$(05.95(5)_{-2.1\%}$	$75.2 \pm 9.5\% (\mathrm{stat}) \pm 5.3\% (\mathrm{syst}) \pm 2.3\% (\mathrm{lumi})$
$e^{\pm}e^{+}e^{-}$	28 00(0)+5.4%	$57.84(1)_{-4.3\%}^{+5.4\%}$	64.00(3)+2.2%	$50.5 \pm 14.2\%(\text{stat}) \pm 10.6\%(\text{syst}) \pm 2.4\%(\text{lumi})$		
$\mu^{\pm}\mu^{+}\mu^{-}$	$26.90(0)_{-6.5\%}$	$57.04(1)_{-4.3\%}$	04.09(3)_2.1%	$63.6 \pm 8.9\%(\text{stat}) \pm 4.1\%(\text{syst}) \pm 2.3\%(\text{lumi})$		
combined	$28.86(0)_{-6.5\%}^{+5.4\%}$	$57.76(1)_{-4.3\%}^{+5.4\%}$	$64.01(3)^{+2.3\%}_{-2.1\%}$	$63.2 \pm 5.2\% (\mathrm{stat}) \pm 4.1\% (\mathrm{syst}) \pm 2.4\% (\mathrm{lumi})$		

channel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m CMS} \ [{ m fb}]$
combined	$148.4(0)^{+5.4\%}_{-6.4\%}$	$301.4(1)_{-4.5\%}^{+5.5\%}$	$334.3(2)^{+2.3\%}_{-2.1\%}$	$258 \pm 8.1\%(\text{stat})^{+7.4\%}_{-7.7\%}(\text{syst}) \pm 3.1(\text{lumi})$

[Grazzini, Kallweit, Rathlev, MW '17]

SM measurements

ATLAS (8 TeV):

channel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS}$ [fb]
$\mu^{\pm}e^{+}e^{-}$	$18.32(0)^{+2.3\%}_{-3.2\%}$	32 76(1)+5.4%	$35.53(2)_{-1.9\%}^{+1.8\%}$	$36.3 \pm 5.4\%(\text{stat}) \pm 2.6\%(\text{syst}) \pm 2.2\%(\text{lumi})$
$e^{\pm}\mu^{+}\mu^{-}$		$32.70(1)_{-4.1\%}$		$35.7 \pm 5.3\%(\text{stat}) \pm 3.7\%(\text{syst}) \pm 2.2\%(\text{lumi})$
$e^{\pm}e^{+}e^{-}$	18 37(0)+2.3%	$32.85(1)_{-4.1\%}^{+5.4\%}$	35.64(2)+1.8%	$38.1 \pm 6.2\% (\mathrm{stat}) \pm 4.5\% (\mathrm{syst}) \pm 2.2\% (\mathrm{lumi})$
$\mu^{\pm}\mu^{+}\mu^{-}$	$16.37(0)_{-3.2\%}$	$32.00(1)_{-4.1\%}$	$55.04(2)_{-1.9\%}$	$33.3 \pm 4.7\%(\text{stat}) \pm 2.5\%(\text{syst}) \pm 2.2\%(\text{lumi})$
combined	$18.35(0)_{-3.2\%}^{+2.3\%}$	$32.81(1)_{-4.1\%}^{+5.4\%}$	$35.59(2)_{-1.9\%}^{+1.8\%}$	$35.1 \pm 2.7\%(\text{stat}) \pm 2.4\%(\text{syst}) \pm 2.2\%(\text{lumi})$

pertec	t agreemen	t at	NNLO
--------	------------	------	------

TLAS	(13	TeV):

perfect	agr	eemei	nt at	NNL	0.
---------	-----	-------	-------	-----	----

	channel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS}$ [fb]
	$\mu^{\pm}e^{+}e^{-}$	28 83(0)+5.4%	$57.69(1)_{-4.3\%}^{+5.4\%}$	63 03(3)+2.3%	$55.1 \pm 11.1\%(\text{stat}) \pm 5.1\%(\text{syst}) \pm 2.4\%(\text{lumi})$
	$e^{\pm}\mu^{+}\mu^{-}$	$20.09(0)_{-6.5\%}$	$37.09(1)_{-4.3\%}$	$(03.93(3)_{-2.1\%})$	$75.2 \pm 9.5\% (\mathrm{stat}) \pm 5.3\% (\mathrm{syst}) \pm 2.3\% (\mathrm{lumi})$
	$e^{\pm}e^{+}e^{-}$	28 00(0)+5.4%	57 84(1)+5.4%	$64.09(3)_{-2.1\%}^{+2.2\%}$	$50.5 \pm 14.2\% (\text{stat}) \pm 10.6\% (\text{syst}) \pm 2.4\% (\text{lumi})$
	$\mu^{\pm}\mu^{+}\mu^{-}$	$20.90(0)_{-6.5\%}$	$97.04(1)_{-4.3\%}$		$63.6 \pm 8.9\%(\text{stat}) \pm 4.1\%(\text{syst}) \pm 2.3\%(\text{lumi})$
)	combined	$28.86(0)_{-6.5\%}^{+5.4\%}$	$57.76(1)_{-4.3\%}^{+5.4\%}$	$64.01(3)_{-2.1\%}^{+2.3\%}$	$63.2 \pm 5.2\% (\mathrm{stat}) \pm 4.1\% (\mathrm{syst}) \pm 2.4\% (\mathrm{lumi})$

CMS (13 TeV):

2.6σ, BUT low statistics

channel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{\mathrm{CMS}} \; [\mathrm{fb}]$
combined	$148.4(0)^{+5.4\%}_{-6.4\%}$	$301.4(1)_{-4.5\%}^{+5.5\%}$	$334.3(2)_{-2.1\%}^{+2.3\%}$	$258 \pm 8.1\% (\mathrm{stat})^{+7.4\%}_{-7.7\%} (\mathrm{syst}) \pm 3.1 (\mathrm{lumi})$

combined $148.4(0)_{-6.4\%}^{+5.4\%}$

[Grazzini, Kallweit, Rathlev, MW '17]

2.6σ, BUT low statistics

SM measurements

 $301.4(1)_{-4.5\%}^{+5.5\%}$

 $334.3(2)^{+2.3\%}_{-2.1\%}$

 $258 \pm 8.1\%(\text{stat})^{+7.4\%}_{-7.7\%}(\text{syst}) \pm 3.1(\text{lumi})$

33

[Grazzini, Kallweit, Rathlev, MW '17]

SM measurements (ATLAS 8 TeV, 20.3 fb-1)

34

[Grazzini, Kallweit, Rathlev, MW '17]

SM measurements (ATLAS 8 TeV, 20.3 fb⁻¹)

[Grazzini, Kallweit, Rathlev, MW '17]

New-physics searches

inspired by [CMS-PAS-SUS-16-024]

	definition of the selection cuts for $pp \to \ell_{\mathbf{w}}^{\pm} \nu_{\ell_{\mathbf{w}}} \ell_{\mathbf{z}}^{+} \ell_{\mathbf{z}}^{-}, \ell, \ell_{\mathbf{z}}, \ell_{\mathbf{w}} \in \{e, \mu\}$
CMS 13 TeV	$p_{T,\ell_1} > 25(20) \text{ GeV if } \ell_1 = e(\mu), p_{T,\ell_1} > 25 \text{ GeV if } \ell_1 = \mu \text{ and } \ell_{\geq 2} \neq \mu$
(cf. Ref. [63])	$p_{T,\ell_{\geq 2}} > 15(10) \text{GeV if } \ell_{\geq 2} = e(\mu), \eta_e < 2.5, \eta_\mu < 2.4,$
	$ m_{3\ell} - m_Z > 15 \text{GeV}, m_{\ell^+\ell^-} > 12 \text{GeV}$

Category I: no additional cut

Category II: $p_T^{\text{miss}} > 200 \,\text{GeV}$

Category III: $m_{T,W} > 120 \,\mathrm{GeV}$

Category IV: $m_{\ell_z \ell_z} > 105 \,\mathrm{GeV}$

New-physics searches

Category I: no additional cut

Category II: $p_T^{\text{miss}} > 200 \,\text{GeV}$

Category III: $m_{T,W} > 120 \,\mathrm{GeV}$

Category IV: $m_{\ell_z \ell_z} > 105 \,\mathrm{GeV}$

channel	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m NLO}/\sigma_{ m LO}$	$\sigma_{ m NNLO}/\sigma_{ m NLO}$ [fb]		
Category I							
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$49.45(0)_{-5.8\%}^{+4.9\%}$	$94.12(2)_{-3.9\%}^{+4.8\%}$	$105.9(1)^{+2.3\%}_{-2.2\%}$	90.3%	12.6%		
$\ell^+\ell^+\ell^-$	$48.97(0)_{-5.8\%}^{+4.8\%}$	$93.13(2)_{-3.9\%}^{+4.8\%}$	$104.7(1)_{-2.1\%}^{+2.2\%}$	90.2%	12.4%		
$\ell'^-\ell^+\ell^-$	$32.04(0)^{+5.3\%}_{-6.3\%}$	$63.68(3)_{-4.1\%}^{+5.0\%}$	$71.89(4)^{+2.3\%}_{-2.2\%}$	98.7%	12.9%		
$\ell^-\ell^+\ell^-$	$31.74(0)_{-6.3\%}^{+5.3\%}$	$63.00(2)_{-4.1\%}^{+5.0\%}$	$71.13(4)^{+2.2\%}_{-2.2\%}$	98.5%	12.9%		
combined	$162.2(0)_{-6.0\%}^{+5.0\%}$	$313.9(1)_{-4.0\%}^{+4.9\%}$	$353.7(3)^{+2.2\%}_{-2.2\%}$	93.5%	12.7%		
Category II							
$\ell'^+\ell^+\ell^-$	$0.3482(0)^{+2.8\%}_{-2.8\%}$	$1.456(0)_{-11\%}^{+13\%}$	$1.799(1)^{+5.2\%}_{-5.4\%}$	318%	23.6%		
$\ell^+\ell^+\ell^-$	$0.3486(0)_{-2.8\%}^{+2.8\%}$	$1.452(0)_{-11\%}^{+13\%}$	$1.789(1)^{+5.1\%}_{-5.4\%}$	316%	23.2%		
$\ell'^-\ell^+\ell^-$	$0.1644(0)^{+2.6\%}_{-2.7\%}$	$0.5546(1)_{-9.9\%}^{+12\%}$	$0.6631(4)_{-4.8\%}^{+4.3\%}$	237%	19.6%		
$\ell^-\ell^+\ell^-$	$0.1645(0)_{-2.7\%}^{+2.6\%}$	$0.5535(1)_{-9.9\%}^{+12\%}$	$0.6600(3)_{-4.7\%}^{+4.2\%}$	237%	19.2%		
combined	$1.026(0)^{+2.7\%}_{-2.8\%}$	$4.015(1)_{-10\%}^{+13\%}$	$4.911(3)^{+4.9\%}_{-5.2\%}$	292%	22.3%		
	Category III						
$\ell'^+\ell^+\ell^-$	$0.3642(0)_{-2.2\%}^{+1.5\%}$	$0.5909(1)_{-3.3\%}^{+4.3\%}$	$0.6373(16)^{+1.6\%}_{-1.6\%}$	62.3%	7.86%		
$\ell^+\ell^+\ell^-$	$1.090(0)^{+1.7\%}_{-2.4\%}$	$1.904(0)^{+4.8\%}_{-3.8\%}$	$2.071(2)_{-1.9\%}^{+1.9\%}$	74.7%	8.79%		
$\ell'^-\ell^+\ell^-$	$0.2055(0)_{-2.8\%}^{+2.0\%}$	$0.3447(1)_{-3.4\%}^{+4.5\%}$	$0.3731(9)_{-1.7\%}^{+1.6\%}$	67.8%	8.22%		
$\ell^-\ell^+\ell^-$	$0.6463(1)_{-2.9\%}^{+2.1\%}$	$1.136(0)^{+4.8\%}_{-3.7\%}$	$1.232(1)^{+1.7\%}_{-1.7\%}$	75.8%	8.42%		
combined	$2.306(0)_{-2.5\%}^{+1.8\%}$	$3.976(1)_{-3.7\%}^{+4.7\%}$	$4.313(6)^{+1.8\%}_{-1.8\%}$	72.4%	8.50%		
Category IV							
$\ell'^+\ell^+\ell^-$	$2.500(0)_{-3.9\%}^{+3.1\%}$	$4.299(1)_{-3.4\%}^{+4.1\%}$	$4.682(2)_{-1.6\%}^{+1.7\%}$	72.0%	8.92%		
$\ell^+\ell^+\ell^-$	$2.063(0)^{+3.4\%}_{-4.2\%}$	$3.740(1)_{-3.6\%}^{+4.5\%}$	$4.160(2)_{-2.0\%}^{+2.2\%}$	81.3%	11.2%		
$\ell'^-\ell^+\ell^-$	$1.603(0)_{-4.4\%}^{+3.4\%}$	$2.805(1)_{-3.5\%}^{+4.2\%}$	$3.058(1)_{-1.6\%}^{+1.7\%}$	75.0%	9.01%		
$\ell^-\ell^+\ell^-$	$1.373(0)^{+3.8\%}_{-4.7\%}$	$2.591(1)_{-3.9\%}^{+4.7\%}$	$2.904(1)_{-2.1\%}^{+2.2\%}$	88.7%	12.1%		
combined	$7.540(1)_{-4.2\%}^{+3.4\%}$	$13.44(0)^{+4.4\%}_{-3.6\%}$	$14.80(1)_{-1.8\%}^{+1.9\%}$	78.2%	10.2%		

New-physics searches

Category I: no additional cut

Category II: $p_T^{\text{miss}} > 200 \,\text{GeV}$

Category III: $m_{T,W} > 120 \,\mathrm{GeV}$

Category IV: $m_{\ell_z \ell_z} > 105 \,\mathrm{GeV}$

QCD corrections VERY different for various Categories (cuts)

channel	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m NLO}/\sigma_{ m LO}$	$\sigma_{ m NNLO}/\sigma_{ m NLO}$ [fb]	
Category I						
ℓ' + ℓ + ℓ -	$49.45(0)_{-5.8\%}^{+4.9\%}$	$94.12(2)_{-3.9\%}^{+4.8\%}$	$105.9(1)^{+2.3\%}_{-2.2\%}$	90.3%	12.6%	
$\ell^+\ell^+\ell^-$	$48.97(0)^{+4.8\%}_{-5.8\%}$	$93.13(2)_{-3.9\%}^{+4.8\%}$	$104.7(1)_{-2.1\%}^{+2.2\%}$	90.2%	12.4%	
$\ell'^-\ell^+\ell^-$	$32.04(0)^{+5.3\%}_{-6.3\%}$	$63.68(3)^{+5.0\%}_{-4.1\%}$	$71.89(4)_{-2.2\%}^{+2.3\%}$	98.7%	12.9%	
$\ell^-\ell^+\ell^-$	$31.74(0)_{-6.3\%}^{+5.3\%}$	$63.00(2)_{-4.1\%}^{+5.0\%}$	$71.13(4)^{+2.2\%}_{-2.2\%}$	98.5%	12.9%	
combined	$162.2(0)^{+5.0\%}_{-6.0\%}$	$313.9(1)^{+4.9\%}_{-4.0\%}$	$353.7(3)^{+2.2\%}_{-2.2\%}$	93.5%	12.7%	
Category II						
ℓ' + ℓ + ℓ -	$0.3482(0)_{-2.8\%}^{+2.8\%}$	$1.456(0)_{-11\%}^{+13\%}$	$1.799(1)^{+5.2\%}_{-5.4\%}$	318%	23.6%	
$\ell^+\ell^+\ell^-$	$0.3486(0)_{-2.8\%}^{+2.8\%}$	$1.452(0)_{-11\%}^{+13\%}$	$1.789(1)^{+5.1\%}_{-5.4\%}$	316%	23.2%	
$\ell'^-\ell^+\ell^-$	$0.1644(0)^{+2.6\%}_{-2.7\%}$	$0.5546(1)_{-9.9\%}^{+12\%}$	$0.6631(4)_{-4.8\%}^{+4.3\%}$	237%	19.6%	
$\ell^-\ell^+\ell^-$	$0.1645(0)_{-2.7\%}^{+2.6\%}$	$0.5535(1)_{-9.9\%}^{+12\%}$	$0.6600(3)_{-4.7\%}^{+4.2\%}$	237%	19.2%	
combined	$1.026(0)^{+2.7\%}_{-2.8\%}$	$4.015(1)_{-10\%}^{+13\%}$	$4.911(3)^{+4.9\%}_{-5.2\%}$	292%	22.3%	
		Cate	egory III			
$\ell'^+\ell^+\ell^-$	$0.3642(0)_{-2.2\%}^{+1.5\%}$	$0.5909(1)_{-3.3\%}^{+4.3\%}$	$0.6373(16)^{+1.6\%}_{-1.6\%}$	62.3%	7.86%	
$\ell^+\ell^+\ell^-$	$1.090(0)^{+1.7\%}_{-2.4\%}$	$1.904(0)^{+4.8\%}_{-3.8\%}$	$2.071(2)_{-1.9\%}^{+1.9\%}$	74.7%	8.79%	
$\ell'^-\ell^+\ell^-$	$0.2055(0)_{-2.8\%}^{+2.0\%}$	$0.3447(1)_{-3.4\%}^{+4.5\%}$	$0.3731(9)_{-1.7\%}^{+1.6\%}$	67.8%	8.22%	
$\ell^-\ell^+\ell^-$	$0.6463(1)_{-2.9\%}^{+2.1\%}$	$1.136(0)^{+4.8\%}_{-3.7\%}$	$1.232(1)^{+1.7\%}_{-1.7\%}$	75.8%	8.42%	
combined	$2.306(0)^{+1.8\%}_{-2.5\%}$	$3.976(1)_{-3.7\%}^{+4.7\%}$	$4.313(6)^{+1.8\%}_{-1.8\%}$	72.4%	8.50%	
Category IV						
ℓ' + ℓ + ℓ -	$2.500(0)_{-3.9\%}^{+3.1\%}$	$4.299(1)_{-3.4\%}^{+4.1\%}$	$4.682(2)_{-1.6\%}^{+1.7\%}$	72.0%	8.92%	
$\ell^+\ell^+\ell^-$	$2.063(0)^{+3.4\%}_{-4.2\%}$	$3.740(1)_{-3.6\%}^{+4.5\%}$	$4.160(2)_{-2.0\%}^{+2.2\%}$	81.3%	11.2%	
$\ell'^-\ell^+\ell^-$	$1.603(0)_{-4.4\%}^{+3.4\%}$	$2.805(1)_{-3.5\%}^{+4.2\%}$	$3.058(1)_{-1.6\%}^{+1.7\%}$	75.0%	9.01%	
$\ell^-\ell^+\ell^-$	$1.373(0)_{-4.7\%}^{+3.8\%}$	$2.591(1)_{-3.9\%}^{+4.7\%}$	$2.904(1)_{-2.1\%}^{+2.2\%}$	88.7%	12.1%	
combined	$7.540(1)_{-4.2\%}^{+3.4\%}$	$13.44(0)^{+4.4\%}_{-3.6\%}$	$14.80(1)_{-1.8\%}^{+1.9\%}$	78.2%	10.2%	

New-physics searches

Category I: no additional cut

Category II: $p_T^{\text{miss}} > 200 \,\text{GeV}$

Category III: $m_{T,W} > 120 \,\mathrm{GeV}$

Category IV: $m_{\ell_z \ell_z} > 105 \,\mathrm{GeV}$

QCD corrections VERY different for various Categories (cuts)

~ 200 Events at 40 fb-1

~ I5000 Events at 3 ab-1

channel	σ [fb]	σ [fb]	σ	<u></u>	$\sigma_{\text{max}}/\sigma_{\text{max}}$ [fb]		
	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	ONLO/OLO	$\sigma_{\rm NNLO}/\sigma_{\rm NLO}$ [fb]		
Category I							
$\ell'^+\ell^+\ell^-$	$49.45(0)^{+4.9\%}_{-5.8\%}$	$94.12(2)_{-3.9\%}^{+4.8\%}$	$105.9(1)^{+2.3\%}_{-2.2\%}$	90.3%	12.6%		
$\ell^+\ell^+\ell^-$	$48.97(0)^{+4.8\%}_{-5.8\%}$	$93.13(2)_{-3.9\%}^{+4.8\%}$	$104.7(1)_{-2.1\%}^{+2.2\%}$	90.2%	12.4%		
$\ell'^-\ell^+\ell^-$	$32.04(0)_{-6.3\%}^{+5.3\%}$	$63.68(3)_{-4.1\%}^{+5.0\%}$	$71.89(4)^{+2.3\%}_{-2.2\%}$	98.7%	12.9%		
$\ell^-\ell^+\ell^-$	$31.74(0)^{+5.3\%}_{-6.3\%}$	$63.00(2)_{-4.1\%}^{+5.0\%}$	$71.13(4)^{+2.2\%}_{-2.2\%}$	98.5%	12.9%		
combined	$162.2(0)_{-6.0\%}^{+5.0\%}$	$313.9(1)_{-4.0\%}^{+4.9\%}$	$353.7(3)^{+2.2\%}_{-2.2\%}$	93.5%	12.7%		
Category II							
ℓ' + ℓ + ℓ -	$0.3482(0)^{+2.8\%}_{-2.8\%}$	$1.456(0)_{-11\%}^{+13\%}$	$1.799(1)^{+5.2\%}_{-5.4\%}$	318%	23.6%		
$\ell^+\ell^+\ell^-$	$0.3486(0)_{-2.8\%}^{+2.8\%}$	$1.452(0)_{-11\%}^{+13\%}$	$1.789(1)^{+5.1\%}_{-5.4\%}$	316%	23.2%		
$\ell'^-\ell^+\ell^-$	$0.1644(0)^{+2.6\%}_{-2.7\%}$	$0.5546(1)_{-9.9\%}^{+12\%}$	$0.6631(4)_{-4.8\%}^{+4.3\%}$	237%	19.6%		
$\ell^-\ell^+\ell^-$	$0.1645(0)_{-2.7\%}^{+2.6\%}$	$0.5535(1)_{-9.9\%}^{+12\%}$	$0.6600(3)_{-4.7\%}^{+4.2\%}$	237%	19.2%		
combined	$1.026(0)^{+2.7\%}_{-2.8\%}$	$4.015(1)_{-10\%}^{+13\%}$	$4.911(3)^{+4.9\%}_{-5.2\%}$	292%	22.3%		
Category III							
c l	$0.3642(0)_{-2.2\%}^{+1.5\%}$	$0.5909(1)_{-3.3\%}^{+4.3\%}$	$0.6373(16)^{+1.6\%}_{-1.6\%}$	62.3%	7.86%		
$\ell^+\ell^+\ell^-$	$1.090(0)^{+1.7\%}_{-2.4\%}$	$1.904(0)^{+4.8\%}_{-3.8\%}$	$2.071(2)_{-1.9\%}^{+1.9\%}$	74.7%	8.79%		
$\ell'^-\ell^+\ell^-$	$0.2055(0)_{-2.8\%}^{+2.0\%}$	$0.3447(1)_{-3.4\%}^{+4.5\%}$	$0.3731(9)_{-1.7\%}^{+1.6\%}$	67.8%	8.22%		
$\ell^-\ell^+\ell^-$	$0.6463(1)_{-2.9\%}^{+2.1\%}$	$1.136(0)^{+4.8\%}_{-3.7\%}$	$1.232(1)_{-1.7\%}^{+1.7\%}$	75.8%	8.42%		
combined	$2.306(0)_{-2.5\%}^{+1.8\%}$	$3.976(1)_{-3.7\%}^{+4.7\%}$	$4.313(6)^{+1.8\%}_{-1.8\%}$	72.4%	8.50%		
Category IV							
$\ell'^{+}\ell^{+}\ell^{-}$	$2.500(0)_{-3.9\%}^{+3.1\%}$	$4.299(1)_{-3.4\%}^{+4.1\%}$	$4.682(2)_{-1.6\%}^{+1.7\%}$	72.0%	8.92%		
$\ell^+\ell^+\ell^-$	$2.063(0)_{-4.2\%}^{+3.4\%}$	$3.740(1)_{-3.6\%}^{+4.5\%}$	$4.160(2)_{-2.0\%}^{+2.2\%}$	81.3%	11.2%		
$\ell'^-\ell^+\ell^-$	$1.603(0)_{-4.4\%}^{+3.4\%}$	$2.805(1)_{-3.5\%}^{+4.2\%}$	$3.058(1)_{-1.6\%}^{+1.7\%}$	75.0%	9.01%		
$\ell^-\ell^+\ell^-$	$1.373(0)^{+3.8\%}_{-4.7\%}$	$2.591(1)_{-3.9\%}^{+4.7\%}$	$2.904(1)_{-2.1\%}^{+2.2\%}$	88.7%	12.1%		
combined	$7.540(1)_{-4.2\%}^{+3.4\%}$	$13.44(0)^{+4.4\%}_{-3.6\%}$	$14.80(1)_{-1.8\%}^{+1.9\%}$	78.2%	10.2%		

CERN

37

[Grazzini, Kallweit, Rathlev, MW '17]

New-physics searches

Category I: no additional cuts

CERN

38

[Grazzini, Kallweit, Rathlev, MW '17]

New-physics searches

Category I: no additional cuts

CERN

39

[Grazzini, Kallweit, Rathlev, MW '17]

New-physics searches

Category II: pTmiss>200 GeV

CERN

40

[Grazzini, Kallweit, Rathlev, MW '17]

New-physics searches

Category II: pTmiss>200 GeV

CERN

41

[Grazzini, Kallweit, Rathlev, MW '17]

New-physics searches

Category III: m_{T,W}>120 GeV

CERN

42

[Grazzini, Kallweit, Rathlev, MW '17]

New-physics searches

Category IV: m_{II}>105 GeV

Summary

MATRIX: (public release in preparation!)

- tool for fully-differential NNLO(+NNLL) computations -- flexible, powerful and simple!
- large list of $2 \rightarrow 1$, $2 \rightarrow 2$ Higgs and vector-boson processes
- includes: full leptonic $(2\rightarrow 4)$ processes, with: all topologies, off-shell effects, spin correlations
 - realistic computation of cross section in the fiducial phase space

Physics applications:

- All diboson processes available now at NNLO (both: inclusive & differentially; WZ was the last)
- Very good agreement of theory and data for VV processes (shown for ZZ and WZ)
- evident: importance of NNLO for precision and accuracy (to describe data)

Prospects at the HL/HE LHC:

- Statistical error subleading for integrated (inclusive & fiducial) rates (reduce systematics?)
- Far reach in tails of kinematical distributions for VV processes:
 - \longrightarrow up to $\mathcal{O}(\mathsf{ITeV})$ for p_T and invariant-mass distributions at 13 TeV, 3 ab-1
 - well beyond $\mathcal{O}(\mathsf{ITeV})$ for p_T and invariant-mass distributions at 27 TeV, I5 ab-I

- Outlook ZZ with neutrino decay at NNLO; mixed ZZ/WW $\rightarrow \ell \nu \ell \nu$ channel
 - **beyond MATRIX release:** p_T resummation, NLO gg, NLO EW, ...

```
BAND:

| Color | Color
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ""| 15 | H15 | 79, wholl if M o haling took is constructed in the construction of the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C/ OArs:..."JA.f\)xd8\c>BoPOFWY-1.50WKILWESTEDNUM: «AA+'100 "CHECK, which ended from the construction of t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          h troos
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  [«/kofukeum sha a.k\z.f.a a/ +N-fileumamai b-wamaa y-
[«/kofukeum sha afasasaanaoe, a/ 50 Beirsahus

'\u000cm mu*pamabaalosaanaoe, a/ 50 Beirsahus

'\u000cm mu*pamabaalosaanaoe, a/ 50 Beirsahus

'\u000cm mu*pamabaalosaanaoe, a/ 50 Beirsahus

'\u000cm mu*pamabaalosaanao

'
                                                                                                                                                                                                                                                                                                                                                                                                                                                      9-Аттн9
S″O∏ ¥~∢óÖ ∂/å°\oZ îm
-iG″>5Sfe;{≈ ii∑DÜ"ce
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ™T NA 1 b -f.éëE le¢Å
H, +L 1 ...L p -fiÅ-
,E'≈ ap 'å∂≈Eß' jYÅlnÖPÖ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              å@ óM/ r>@(e ĕā<0A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ·Ta*tK 12'(17*c) A covy2yay<
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            > °01Ä á.¥
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      b Gö5°¥köAr∂w/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0 barnewshix /30
Cx SA_f*43d6:3401.15/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1K9Y60 6#1 1L4
Hu¶ an6)1055?___
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ĕ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       . logS c
. theS cax1≠*xe descar
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               A, 2ff; > .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   110 n oci ea->* hit
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      「美華和学なの多Mをリリロ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1800$A; X+ 11;6" 5 1.0 (DX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Sa×5 OSAO h. P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        +T1.>) ®°C SKMI
```

Thank You !

Back Up

Introduction

Vector-boson pair production: Data vs. Theory

pt subtraction master formula:

$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

[Catani, Grazzini '07]

pt subtraction master formula:

$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

[Catani, Grazzini '07]

subtraction terms known from resummation:

$$d\sigma^{F+1\text{jet}} \xrightarrow{p_T \ll Q} \left[d\sigma^{(\text{res})} \right]_{\text{f.o.}} \equiv \Sigma(p_T/Q) \otimes d\sigma_{\text{LO}}$$

Resummation formula:

$$rac{d\sigma^{({
m res})}}{dp_T^2\,dy\,dM\,d\Omega} \sim \int db\,rac{b}{2}\,J_0(b\,p_T)\,S(b,A,B)\,{\cal H}_{N_1,N_2}\,f_{N_1}\,f_{N_2}$$

[Collins, Soper, Sterman '85], [Bozzi, Catani, de Florian, Grazzini '06]

Marius Wiesemann (CERN) VV production October 31, 2017 48

pt subtraction master formula:

$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

[Catani, Grazzini '07]

subtraction terms known from resummation:

$$d\sigma^{F+1\text{jet}} \xrightarrow{p_T \ll Q} \left[d\sigma^{(\text{res})} \right]_{\text{f.o.}} \equiv \Sigma(p_T/Q) \otimes d\sigma_{\text{LO}}$$

NNLO accuracy consequence of unitarity:

$$\int dp_T^2 \frac{d\sigma^{(\text{res})}}{dp_T^2 dy dM d\Omega} = \mathcal{H} \otimes d\sigma_{\text{LO}} \qquad \left(\ln(Q^2 b^2 / b_0^2) \to \ln(Q^2 b^2 / b_0^2 + 1)\right)$$

Resummation formula:

$$\frac{d\sigma^{(\text{res})}}{dp_T^2 \, dy \, dM \, d\Omega} \sim \int db \, \frac{b}{2} \, J_0(b \, p_T) \, S(b,A,B) \, \mathcal{H}_{N_1,N_2} \, f_{N_1} \, f_{N_2}$$

[Collins, Soper, Sterman '85], [Bozzi, Catani, de Florian, Grazzini '06]

r_{cut}→0 extrapolation in MATRIX

Status of pt resummation

- p_T = transverse momentum of Born-level system, eg: p_{T,4ℓ} in pp \rightarrow ZZ \rightarrow 4ℓ
- Why resummation? Observable divergent for $p_T \rightarrow 0$ at fixed order!
- \bullet p_T subtraction \leftrightarrow p_T resummation: all NNLO directly also at NNLL

$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

Status of pt resummation

50

- [®] p_T = transverse momentum of Born-level system, eg: p_{T,4ℓ} in pp \rightarrow ZZ \rightarrow 4ℓ
- Why resummation? Observable divergent for $p_T \rightarrow 0$ at fixed order!
- \bullet p_T subtraction \leftrightarrow p_T resummation: all NNLO directly also at NNLL

$$d\sigma_{\text{NNLO}} = \left[d\sigma_{\text{NLO}}^{F+1\text{jet}} - \Sigma_{\text{NNLO}} \otimes d\sigma_{\text{LO}} \right] + \mathcal{H}_{\text{NNLO}} \otimes d\sigma_{\text{LO}}$$

$$\frac{d\sigma^{(\text{res})}}{dp_T^2\,dy\,dM\,d\Omega} \sim \int db\,\frac{b}{2}\,J_0(b\,p_T)\,S(b,A,B)\,\mathcal{H}_{N_1,N_2}\,f_{N_1}\,f_{N_2}$$

$$\int dp_T^2 \, \frac{d\sigma^{(\text{res})}}{dp_T^2 \, dy \, dM \, d\Omega} = \mathcal{H} \otimes d\sigma_{\text{LO}}$$

Status of pt resummation

5 I

- [®] p_T = transverse momentum of Born-level system, eg: p_{T,4ℓ} in pp \rightarrow ZZ \rightarrow 4ℓ
- Why resummation? Observable divergent for $p_T \rightarrow 0$ at fixed order!
- \bullet p_T subtraction \leftrightarrow p_T resummation: all NNLO directly also at NNLL
- currently restricted to a charge-neutral final-state system (ie, no W and WZ)
- will **not** be included in first public version (due to lack of testing time)
- first application to on-shell WW/ZZ

[Grazzini, Kallweit, Rathlev, MW '15]

Recent 13 TeV ATLAS results for ZZ

52

[ATLAS '17]

13 TeV

27 TeV

54

13 TeV

27 TeV

Reach in the tails for ZZ

55

13 TeV, 3 ab-1

27 TeV, 15 ab-1

Reach in the tails for ZZ

13 TeV

27 TeV

Reach in the tails for ZZ

57

13 TeV, 3 ab-1

27 TeV, 15 ab-1

58

[Grazzini, Kallweit, Rathlev, MW '17]

- no loop-induced gg component at NNLO
- Large QCD corrections due to radiation zero [Baur, Han, Ohnemus '94]
- Diboson processes at NNLO completed!

W, Z identification different	definition of the fiducial volume for $pp \to \ell_{\mathbf{w}}^{\pm} \nu_{\ell_{\mathbf{w}}} \ell_{\mathbf{z}}^{+} \ell_{\mathbf{z}}^{-}, \ell, \ell_{\mathbf{w}}, \ell_{\mathbf{z}} \in \{e, \mu\}$
ATLAS $8/13 \text{ TeV}$	$p_{T,\ell_z} > 15 \text{GeV}, p_{T,\ell_w} > 20 \text{GeV}, \eta_{\ell} < 2.5,$
(cf. Ref. $[5,6]$)	$ m_{\ell_{z}\ell_{z}} - m_{Z} < 10 \text{GeV}, m_{T,W} > 30 \text{GeV}, \Delta R_{\ell_{z}\ell_{z}} > 0.2, \Delta R_{\ell_{z}\ell_{w}} > 0.3$
CMS 13 TeV	$p_{T,\ell_{z,1}} > 20 \text{GeV}, p_{T,\ell_{z,2}} > 10 \text{GeV}, p_{T,\ell_{w}} > 20 \text{GeV}, \eta_{\ell} < 2.5,$
(cf. Ref. [7])	60 GeV < $m_{\ell_{z}\ell_{z}}$ < 120 GeV, $m_{\ell^{+}\ell^{-}}$ > 4 GeV

CERN

59

[Grazzini, Kallweit, Rathlev, MW '17]

New-physics searches

Category III: m_{T,W}>120 GeV

CERN

60

[Grazzini, Kallweit, Rathlev, MW '17]

New-physics searches

Category IV: m_{II}>105 GeV

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive: distributions (8 TeV)

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

WW signal cuts: distributions (8 TeV)

CERN

[Grazzini, Kallweit, Rathlev, MW '17]

New-physics searches

Category III: m_{T,W}>120 GeV

[Grazzini, Kallweit, Rathlev, MW '17]

various channels:

- **SM** measurements
- different-flavour (DF) channels

same-flavour (SF) channels

$$pp \rightarrow e^+ V_e \ e^+ e^-, \ pp \rightarrow \mu^+ V_\mu \ \mu^+ \mu^-$$
 (identical for massless fermions)

$$pp \rightarrow e^- V_e \ e^+ e^-, \ pp \rightarrow \mu^- V_\mu \ \mu^+ \mu^-$$
 (identical for massless fermions)

- [®] fiducial phase space (ATLAS/CMS) for pp → $I'v_{I'}II$ (I,I' ∈ {e,μ})
 - Z/W reconstruction: trivial for DF; CMS: Z=lepton pair closest to mz, ATLAS: "resonant shape" for SF

 [arXiv:1603.02151]

for all possible combinations of pairs $W=(I', V_{I'})$ and $Z=(I^+, I^-)$ compute

$$P = \left| \frac{1}{m_{(\ell^{+},\ell^{-})}^{2} - \left(m_{Z}^{\text{PDG}} \right)^{2} + i \, \Gamma_{Z}^{\text{PDG}} \, m_{Z}^{\text{PDG}}} \right|^{2} \times \left| \frac{1}{m_{(\ell',\nu_{\ell'})}^{2} - \left(m_{W}^{\text{PDG}} \right)^{2} + i \, \Gamma_{W}^{\text{PDG}} \, m_{W}^{\text{PDG}}} \right|^{2}$$

and identify W and Z bosons by combination with highest estimator value P

[Grazzini, Kallweit, Rathlev, MW '17]

various channels:

- **SM** measurements
- different-flavour (DF) channels

$$pp \rightarrow \mu^+ \nu_\mu e^+ e^-$$
, $pp \rightarrow e^+ \nu_e \mu^+ \mu^-$ (identical for massless fermions)

$$pp \rightarrow \mu^- \nu_\mu e^+ e^-$$
, $pp \rightarrow e^- \nu_e \mu^+ \mu^-$ (identical for massless fermions)

same-flavour (SF) channels

pp
$$\rightarrow$$
 e⁺V_e e⁺e⁻, pp $\rightarrow \mu^{+}V_{\mu} \mu^{+}\mu^{-}$ (identical for massless fermions)

pp
$$\rightarrow$$
 e-V_e e+e-, pp $\rightarrow \mu$ -V _{μ} μ + μ - (identical for massless fermions)

- [∞] fiducial phase space (ATLAS/CMS) for pp → $I' V_{I'} II$ (I,I' ∈ {e,μ})
 - Z/W reconstruction: trivial for DF; CMS: Z=lepton pair closest to mz, ATLAS: "resonant shape" for SF

	definition of the fiducial volume for $pp \to \ell_{\mathbf{w}}^{\pm} \nu_{\ell_{\mathbf{w}}} \ell_{\mathbf{z}}^{+} \ell_{\mathbf{z}}^{-}, \ell, \ell_{\mathbf{w}}, \ell_{\mathbf{z}} \in \{e, \mu\}$
ATLAS $8/13 \text{ TeV}$	$p_{T,\ell_z} > 15 \text{GeV}, p_{T,\ell_w} > 20 \text{GeV}, \eta_{\ell} < 2.5,$
(cf. Ref. $[5,6]$)	$ m_{\ell_{\mathbf{z}}\ell_{\mathbf{z}}} - m_Z < 10 \text{GeV}, m_{T,W} > 30 \text{GeV}, \Delta R_{\ell_{\mathbf{z}}\ell_{\mathbf{z}}} > 0.2, \Delta R_{\ell_{\mathbf{z}}\ell_{\mathbf{w}}} > 0.3$
CMS 13 TeV	$p_{T,\ell_{z,1}} > 20 \text{GeV}, p_{T,\ell_{z,2}} > 10 \text{GeV}, p_{T,\ell_{w}} > 20 \text{GeV}, \eta_{\ell} < 2.5,$
(cf. Ref. [7])	60 GeV < $m_{\ell_z \ell_z}$ < 120 GeV, $m_{\ell^+ \ell^-} > 4$ GeV

[Grazzini, Kallweit, Rathlev, MW '17]

New-physics searches

Category I: no additional cuts

