Higher-order EW corrections

Marek Schönherr

CERN

 $HL-LHC\ \&\ HE-LHC\ physics\ workshop$

Electroweak corrections at the HL-LHC

HL-LHC: 13 TeV, 3 ab^{-1}

- rare processes and signatures can be observed
- · cross sections stay the same, but
 - tails can be measured to much greater accuracy
 - many rare processes become observable
- (multi-)TeV tails strongly affected by EW Sudakov corrections, γ -induced production tends to become more important as relative size of photon PDF is larger at large x
- off-shell tails typically have different corrections (EW and QCD) then on-shell production, full off-shell calculation required
- typical rare SM processes are production of multiple EW bosons within in reach: precise study of $V_1V_2V_3$ production ($V_i=W,Z,\gamma$) EW corrections tend to be larger with more EW bosons around
- more precise prediction ⇒ better exclusion limits on NP (AGC, etc.)

EW corrections at 13 TeV

Denner, Lang, Pellen, Uccirati arXiv:1612.07138

 $pp
ightarrow e^+\mu^u_ear
u_\mu bar b h$

Biedermann, Denner, Pellen arXiv:1708.00268

$$pp
ightarrow e^+ \mu^+
u_e
u_\mu jj$$

fully off-shell calculations for complex processes
 → precise predictions for tails (high-p_T, off-shell, ...)

EW corrections at 13 TeV

Dittmaier, Huss, Knippen arXiv:1705.03722

Yong-Bai et.al. arXiv:1507.03693

pp
$$ightarrow W^+ \, Z \, Z$$

• precise predictions for rare processes, but on-shell boson only \rightarrow can have large off-shell effects

Rare processes – example $\gamma \gamma + V$ production

Greiner, MS arXiv:1711.00xxx

- higher luminosity ⇒ more events in tails
- EW correction more important

Rare processes – example $\gamma \gamma + V$ production

Greiner, MS arXiv:1711.00xxx

- higher luminosity ⇒ more events in tails
- EW correction more important

Rare processes – example $\gamma \gamma + V$ production

Greiner, MS arXiv:1711.00xxx

- higher luminosity ⇒ more events in tails
- EW correction more important

Electroweak corrections at the HE-LHC

HE-LHC: 27 TeV, 12 ab^{-1}

- rare processes and signatures can be observed
- cross sections change, most importantly relative to one another
- simultaneous increase in luminosity
 - tails can be measured to greater accuracy
 - rare processes become observable
- (multi-)TeV tails strongly affected by EW Sudakov corrections, γ -induced production tends to become more important
 - ightarrow remains to be seen whether change in QCD corrections not much larger, especially for real radiation dominated ones
- ullet everything moves to smaller x, large increase of g flux for fixed m
 - ightarrow EW corrections more important to q-induced processes
- off-shell tails typically have different corrections (EW and QCD) then on-shell production, full off-shell calculation required
- typical rare SM processes are production of multiple EW bosons, within in reach: precise study of $V_1V_2V_3$ production ($V_i=W,Z,\gamma$) EW corrections tend to be larger with more EW bosons around

EW corrections at higher collider energies

- multiple studies so far, mostly for FCC 100 TeV
 - \rightarrow benefits mostly from reach into TeV scale observables

Pagani, Tsinikos, Zaro arXiv:1606.01915

EW corrections in diboson production at 13 and 27 TeV

- xs increase in identical fiducial region: inclusive ~ 2 with p_T > 500 GeV ~ 5.5
- EW corrections very similar (at least in Sudakov regime where large)

EW corrections in diboson production at 13 and 27 TeV

- xs increase in identical fiducial region: inclusive \sim 2, with $p_{\rm T}>500\,{\rm GeV}\sim5.5$ or with $m_{\rm H}>1\,{\rm TeV}\sim4.5$
- EW corrections very similar (at least in Sudakov regime where large)

EW corrections in diboson production at 13 and 27 TeV

- xs increase in identical fiducial region: inclusive \sim 2, with $p_{\rm T}>500\,{\rm GeV}\sim5.5$, or with $m_{\ell\ell}>1\,{\rm TeV}\sim4.5$
- EW corrections very similar (at least in Sudakov regime where large)

γ -PDF importance at 13 and 27 TeV

• importance of $\gamma\text{-PDF}$ in same order of magnitude, but somewhat larger at 27 TeV

9/15

External photons – initial state

Harland-Lang et.al. arXiv:1605.04935, Kallweit et.al. arxiv:1705.00598

- **initial state photons** are not resolved, treat them identically to any other parton
- both elastic and inelastic photons evolve according to DGLAP \rightarrow splittings $\gamma \rightarrow \gamma, \ \gamma \rightarrow q \bar{q}, \ q \rightarrow q \gamma$
- the photon PDF (at NLO QED) contains renormalisation factors that must be cancelled by the partonic cross section
- \Rightarrow renormalisation in short-distance scheme $(G_{\mu}, \alpha(m_Z), \overline{\text{MS}}, ...)$

External photons – final state

- final state photons may be resolved or not strictly speaking: differentiate between short-distance photon and indentified, measurable photon
- \Rightarrow if treated as identified particle, renormalise on-shell $(\alpha(0))$, no $\gamma \to \mathit{ff}$ splittings
 - $\rightarrow \ \text{renormalisation contains IR poles}$
- \Rightarrow if treated democratically (just another parton), renormalise in short distance scheme (G_{μ} , $\alpha(m_Z)$, $\overline{\text{MS}}$, ...), include $\gamma \to ff$ splittings
 - $\rightarrow \mathsf{pure}\ \mathsf{UV}\ \mathsf{renormalisation}$
 - ightarrow identify photon through fragmentation function $D^p_{\gamma}(z,\mu)$

i.e.
$$D_{\gamma}^{\gamma}(z,\mu) = \frac{\alpha(0)}{\alpha_{\rm sd}} \, \delta(1-z) + \mathcal{O}(\alpha)$$

all others $D_{\gamma}^{q}(z,\mu) = \mathcal{O}(\alpha), \, D_{\gamma}^{g}(z,\mu) = \mathcal{O}(\alpha^{2})$

• identical at NLO EW, if fragmentation D^q_{γ} on Born is negligible

External photons – final state

- **jet definition:** completely democratic vs. anti-tagging jets with too large photon content
- democratic:
 - + straight forward, close to experiment for many procs
 - more subtractions (Born configs with FS photons)
- anti-tagging jets with too large photon content: dress quarks for collinear safety, discard jets if $E_{\gamma} > z_{\rm thr} \, E_{\rm jet} \, ({\rm e.g.} \, z_{\rm thr} = 0.5)$
 - + fewer contributions
 - difference to experimental jet definition (usually subpercent)

n_f schemes and limited PDF availability

- all available QED PDFs are either 5F (CT14, LUX, NNPDF3.0) or 6F (NNPDF2.3)

$$\begin{split} & \sigma_{\text{NLO}}^{(n_{f})}(\mu_{R}^{2},\mu_{R}^{2}) \\ & = \sigma_{\text{NLO}}^{(n_{f})}(\mu_{R}^{2},\mu_{R}^{2}) \\ & + \frac{\alpha_{s}}{3\pi} \sum_{i=n_{f}}^{n_{f}} \sum_{\{j,j_{2}\}} T_{R} \left[p \log \frac{m_{i}^{2}}{\mu_{R}^{2}} \Theta \left(\mu_{R}^{2} - m_{i}^{2} \right) - \Delta_{j_{1}j_{2}}^{gg} \log \frac{m_{i}^{2}}{\mu_{F}^{2}} \Theta \left(\mu_{F}^{2} - m_{i}^{2} \right) \right] \sigma_{\text{LO};j_{1}j_{2}}^{(n_{f})}(\mu_{R}^{2},\mu_{F}^{2}) \\ & - \frac{\alpha}{3\pi} \sum_{i=n_{f}}^{n_{f}} \sum_{\{j_{1}j_{2}\}} N_{C,i} \ Q_{i}^{2} \ \Delta_{j_{1}j_{2}}^{\gamma\gamma} \log \frac{m_{i}^{2}}{\mu_{F}^{2}} \Theta \left(\mu_{F}^{2} - m_{i}^{2} \right) \ \sigma_{\text{LO};j_{1}j_{2}}^{(n_{f})}(\mu_{R}^{2},\mu_{F}^{2}) \ . \end{split}$$

- all PDFs are LO in QED, will need NLO QED PDFs
- is there a point of still having QCD only PDFs?

Conclusions

- EW correction have a rich phenomenology, especially in complex processes
- both at HL–LHC and HE–LHC more complex processes can be measured to higher accuracy
- need to include EW corrections the further into tails or rare processes one looks
- photon-initiated processes become somewhat more important, both for HL-LHC and HE-LHC, and should be accounted for consistently at NLO EW
- some systematic issues to be resolved (e.g. jet definition)
- many calculations exists (automatition of NLO EW)
 → evaluate in light of HL-LHC and HE-LHC

Thank you for your attention!