Parton Distributions at the HL-LHC and HE-LHC

Lucian Harland-Lang*, University of Oxford
Jun Gao, Shanghai Jiao Tong University
Juan Rojo, VU Amsterdam and NIKHEF

Workshop on the physics of HL-LHC and perspectives at HE-LHC
CERN, 1 November 2017

*speaker
Outline

• PDFs at the HL-LHC/HE-LHC - overview.
• Recent Progress in PDF fitting.
• Theoretical uncertainties:
 ‣ Parametric.
 ‣ Missing higher orders.
• Role of electroweak corrections:
 ‣ Corrections to cross sections.
 ‣ Photon-initiated processes.
 ‣ EW PDFs.
• PDFs with resummation:
 ‣ High x - threshold.
 ‣ Low x - BFKL.
• PDFs at a high energy ep/eA collider.
PDFs at the HL-LHC

New parton distribution functions from a global analysis of quantum chromodynamics

Sayipjamal Dulat,1, 2, * Tie-Jun Hou,3, † Jun Gao,4, 1 Marco Guzzi,5, 1 Joey Huston,2, ‡ Pavel Nadolsky,3, ** Jon Pumplin,7, †† Carl Schmidt,2, †† Daniel Stump,2, ‡‡ and C.-P. Yuan,†††

1 School of Physics Science and Technology, Xinyang University, Xinyang, Xinyang 830046 China
2 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 U.S.A.
3 Department of Physics, Southern Methodist University, Dallas, TX 75275-0188, U.S.A.
4 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
5 School of Physics & Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

Abstract

We present NNPDF3.0, the first set of parton distribution functions (PDFs) of the LHC era: MMHT 2014 PDFs

Parton distributions in the LHC era:

MMHT 2014 PDFs

a Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
b Institute for Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, UK

DESY 16-179
DO-TH 1613
January 2017

Parton Distribution Functions, \(\alpha_s\), and Heavy-Quark Masses for LHC Run II

S. Alekhiina,b, J. Blümleina, S. Mochb and R. Plačakyeb

a II. Institut für Theoretische Physik, Universität Hamburg
Luruper Chaussee 149, D–22761 Hamburg, Germany
b Institute for High Energy Physics
142281 Protvino, Moscow region, Russia
c Deutsches Elektronensynchrotron DESY
Platanenallee 6, D–15738 Zeuthen, Germany

• What will we need for `PDFs at the HL-LHC/HE-LHC'?
PDFs at the HL-LHC

- **HL-LHC**: precision machine \(\Rightarrow \) need **high precision PDFs** to control theory uncertainties for searches and precision measurements.
 - Higher statistics \(\Rightarrow \) increased coverage at **high** \(x \) where PDFs currently less well constrained.
 - Must systematically account for contributions/uncertainties often omitted before: **EW corrections, theoretical uncertainties**…
 - **NNLO** will be the standard. **New tools** for fitting?

- **High precision data**
 - Opportunity for PDF fitting:
 - Rarer processes increasingly abundant use in fits.
 - Increasingly differential information.

Figure 53: The gluon PDF at high scale of \(Q = 100 \) GeV with the corresponding fits where the PDF uncertainties are quite large, leading to significant theoretical uncertainties for the PDFs at the HL-LHC.

NNLO, \(\alpha_s = 0.118 \), \(Q = 100 \) GeV
PDFs at the HE-LHC

- **HE-LHC**: many/all of previous considerations apply here as well. In addition, higher energy reach:

 - Higher Q^2 coverage \rightarrow role of e.g. **EW corrections** could be larger.
 - Increased coverage in lower x, higher sensitivity to e.g. **resummation** effects?

![Kinematics of HE-LHC at $\sqrt{s}=27$ TeV](image-url)
PDF luminosities

- **HE-LHC**: impact on gg luminosity not dramatic.

- **Lower masses** - uncertainties increased somewhat.

- **Higher masses** - increased reach, uncertainties somewhat lower.
• Picture similar for other luminosities, e.g. $q\bar{q}$
• Much recent progress in PDFs - this talk will only cover a small amount.

• For more details, see arXiv:1709.04922 (To appear in Physics Reports).

The Structure of the Proton in the LHC Precision Era

Jun Gaoa, Lucian Harland-Langb, Juan Rojoc,d

aInstitute of Nuclear and Particle Physics, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China

bDepartment of Physics and Astronomy, University College London, WC1E 6BT, United Kingdom

cDepartment of Physics and Astronomy, VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands

dNikhef, Science Park 105, NL-1098 XG Amsterdam, The Netherlands

Abstract

We review recent progress in the determination of the parton distribution functions (PDFs) of the proton,
Progress in PDF fits
Progress in PDF fits

- Global groups busily updating fits to include the plentiful and precise new LHC data. **ABMP16, NNPDF3.1** released recently, **MMHT17/18** and **CT17** on their way.

New datasets in NNPDF3.1

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Data taking</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined HERA inclusive data</td>
<td>Run I+II</td>
<td>quark singlet and gluon</td>
</tr>
<tr>
<td>ATLAS inclusive W, Z rap 7 TeV</td>
<td>2011</td>
<td>strangeness</td>
</tr>
<tr>
<td>ATLAS inclusive jets 7 TeV</td>
<td>2011</td>
<td>large-x gluon</td>
</tr>
<tr>
<td>ATLAS low-mass Drell-Yan 7 TeV</td>
<td>2010+2011</td>
<td>small-x quarks</td>
</tr>
<tr>
<td>ATLAS Z pT 7,8 TeV</td>
<td>2011+2012</td>
<td>medium-x gluon and quarks</td>
</tr>
<tr>
<td>ATLAS and CMS tt differential 8 TeV</td>
<td>2012</td>
<td>large-x gluon</td>
</tr>
<tr>
<td>CMS Z (pT,η) 2D xsecs 8 TeV</td>
<td>2012</td>
<td>medium-x gluon and quarks</td>
</tr>
<tr>
<td>CMS Drell-Yan low+high mass 8 TeV</td>
<td>2012</td>
<td>small-x and large-x quarks</td>
</tr>
<tr>
<td>CMS W asymmetry 8 TeV</td>
<td>2012</td>
<td>quark flavor separation</td>
</tr>
<tr>
<td>CMS 2.76 TeV jets</td>
<td>2012</td>
<td>medium and large-x gluon</td>
</tr>
<tr>
<td>LHCb W,Z rapidity dists 7 TeV</td>
<td>2011</td>
<td>large-x quarks</td>
</tr>
<tr>
<td>LHCb W,Z rapidity dists 8 TeV</td>
<td>2012</td>
<td>large-x quarks</td>
</tr>
</tbody>
</table>

CT17p — data to be included

- Previous LHC and HERA 1 data included in CT14 will be superseded by updated Run 1 and HERA 1+2 data; adding new LHC data, especially on Z boson pT and top quark differential distributions
 - Combined HERA1+2 DIS [1506.06042] update
 - LHCb 7 TeV Z, W muon rapidity dist. [1505.07024] update
 - LHCb 8 TeV Z rapidity dist. [1503.00963] update
 - ATLAS 7 TeV inclusive jet [1410.8857] update
 - CMS 7 TeV inclusive jet (extended y range) [1406.0324] update
 - ATLAS 7 TeV Z pT dist. [1406.3660] new
 - LHCb 13 TeV Z rapidity dist. [1607.06495] update
 - CMS 8 TeV Z pT and rapidity dist. (double diff) [1504.03511] new
 - CMS 8 TeV W, muon asymmetry dist. [1603.01803] update
 - ATLAS 7 TeV W/Z lepton(s) rapidity dist. [1612.03016] update
 - CMS 7,8 TeV tT differential distributions new
 - ATLAS 7,8 TeV tT differential distributions new

MMHT (2016 fit)

<table>
<thead>
<tr>
<th></th>
<th>no. points</th>
<th>NLO χ^2_{pred}</th>
<th>NLO χ^2_{new}</th>
<th>NNLO χ^2_{pred}</th>
<th>NNLO χ^2_{new}</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_T^{H} Tevatron +CMS+ATLAS</td>
<td>18</td>
<td>19.6</td>
<td>20.5</td>
<td>14.7</td>
<td>15.5</td>
</tr>
<tr>
<td>LHCb 7 TeV $W + Z$</td>
<td>33</td>
<td>50.1</td>
<td>45.4</td>
<td>46.5</td>
<td>42.9</td>
</tr>
<tr>
<td>LHCb 8 TeV $W + Z$</td>
<td>34</td>
<td>77.0</td>
<td>58.9</td>
<td>62.6</td>
<td>59.0</td>
</tr>
<tr>
<td>LHCb 8TeV e</td>
<td>17</td>
<td>37.4</td>
<td>33.4</td>
<td>30.3</td>
<td>28.9</td>
</tr>
<tr>
<td>CMS 8 TeV W</td>
<td>22</td>
<td>32.6</td>
<td>18.6</td>
<td>34.9</td>
<td>20.5</td>
</tr>
<tr>
<td>CMS 7 TeV $W + c$</td>
<td>10</td>
<td>8.5</td>
<td>10.0</td>
<td>8.7</td>
<td>8.0</td>
</tr>
<tr>
<td>D0 e asymmetry</td>
<td>13</td>
<td>22.2</td>
<td>21.5</td>
<td>27.3</td>
<td>25.8</td>
</tr>
<tr>
<td>total</td>
<td>3738/3405</td>
<td>4375.9</td>
<td>4336.1</td>
<td>3741.5</td>
<td>3723.7</td>
</tr>
</tbody>
</table>
LHC impact

- These LHC data, combined with new NNLO theory, are now playing a significant role in constraining the PDFs.

- **Differential top**: increased sensitivity vs. total cross section.
- Fits performed with latest NNLO theory. Impact on gluon at high x.

M. Czakon et al., JHEP 1704 (2017) 044

- High precision ATLAS W, Z data at 7 TeV. Sensitive to strange component.
- Impact on proton strangeness significant. Some movement towards flavour symmetric sea.

LHL et al., arXiv:1708.00047

$(s + s)/(u + d)$ (NNLO), $Q^2 = 1.9 \text{ GeV}^2$
LHC impact

- **Inclusive jets** now calculated at NNLO → another PDF handle. LHC jet constraint on gluon consistent with e.g. $t\bar{t}$.
- Some stability when including full theory seems to be present.

J. Gao, “Progress on CTEQ-TEA PDFs”, DIS2017

CT17p best-fit vs. CT14 HERA2

- **Z boson p_{\perp} distribution.** Sensitive to gluon at high x. New NNLO calculation allows constraints on PDFs at this order.

LHC questions

- However, **challenges** for including these increasingly precise data!

![Graph showing comparisons between NLO, NNLO, and NNLO+EW theories with data.](image)

- **ATLAS jets.** Systematics dominated. By eye, description looks good, but issues describing data across all rapidities.

<table>
<thead>
<tr>
<th>χ^2/ndf</th>
<th>$P^\text{jet, max}_T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_T > 70$ GeV</td>
<td>$R = 0.4$</td>
</tr>
<tr>
<td>CT14</td>
<td>$R = 0.6$</td>
</tr>
<tr>
<td>HERAPDF2.0</td>
<td></td>
</tr>
<tr>
<td>NNPDF3.0</td>
<td></td>
</tr>
<tr>
<td>MMHT2014</td>
<td></td>
</tr>
</tbody>
</table>

To achieve acceptable χ^2 for Zp_T data, include additional σ^{uncorr} due to missed theory/exp. uncertainties.

![Table showing comparisons between ATLAS, 7 TeV LHC jets and different PDF sets.](image)

- All bins
- NLO
- NNLO
- NNLO+EW

<table>
<thead>
<tr>
<th>Bin</th>
<th>Order</th>
<th>N_{dat}</th>
<th>$\chi^2_{\text{d.o.f. (NN30)}}$</th>
<th>$\chi^2_{\text{d.o.f. (CT14)}}$</th>
<th>$\chi^2_{\text{d.o.f. (MMHT14)}}$</th>
<th>$\chi^2_{\text{d.o.f. (ABMP16)}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>All bins</td>
<td>NLO</td>
<td>42</td>
<td>9.9</td>
<td>15</td>
<td>9.1</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>NNLO</td>
<td>42</td>
<td>4.9</td>
<td>6.7</td>
<td>7.4</td>
<td>13.</td>
</tr>
<tr>
<td></td>
<td>NNLO+EW</td>
<td>42</td>
<td>3.7</td>
<td>5.2</td>
<td>5.6</td>
<td>12.</td>
</tr>
</tbody>
</table>

Boughezal et al., JHEP 1707 (2017) 130
Theoretical uncertainties
Parametric uncertainties

- Due to input of α_S and **heavy quark mass**, especially the later requires further investigation.
- **MMHT** study - PDFs with different input charm pole mass ± 0.15 GeV.

![Gluon (NLO), percentage difference at $Q^2 = 10^4$ GeV2](image)

![Light quarks (NLO), percentage difference at $Q^2 = 10^4$ GeV2](image)

- **Impact on benchmark cross sections** can be as large/larger than PDF uncertainties.
- Increases at low x, i.e. **higher energies**.

<table>
<thead>
<tr>
<th></th>
<th>σ</th>
<th>PDF unc.</th>
<th>m_c var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>W^+ LHC (14 TeV)</td>
<td>12.5</td>
<td>+0.22 (+1.8%)</td>
<td>+0.091 (+0.73%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.18 (-1.4%)</td>
<td>-0.12 (-0.93%)</td>
</tr>
<tr>
<td>W^- LHC (14 TeV)</td>
<td>9.3</td>
<td>+0.15 (+1.6%)</td>
<td>+0.064 (+0.69%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.14 (-1.5%)</td>
<td>-0.075 (-0.81%)</td>
</tr>
<tr>
<td>Z LHC (14 TeV)</td>
<td>2.06</td>
<td>+0.035 (+1.7%)</td>
<td>+0.021 (+1.03%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.030 (-1.5%)</td>
<td>-0.025 (-1.2%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>σ</th>
<th>PDF unc.</th>
<th>m_c var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs Tevatron (1.96 TeV)</td>
<td>0.87</td>
<td>+0.024 (+2.7%)</td>
<td>-0.0060 (-0.68%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.030 (-3.4%)</td>
<td>+0.0070 (+0.79%)</td>
</tr>
<tr>
<td>Higgs LHC (7 TeV)</td>
<td>14.6</td>
<td>+0.21 (+1.4%)</td>
<td>+0.025 (+0.17%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.29 (-2.0%)</td>
<td>-0.019 (-0.13%)</td>
</tr>
<tr>
<td>Higgs LHC (14 TeV)</td>
<td>47.7</td>
<td>+0.63 (+1.3%)</td>
<td>+0.27 (+0.57%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.88 (-1.8%)</td>
<td>-0.22 (-0.48%)</td>
</tr>
</tbody>
</table>
Missing higher orders

- Uncertainties due to missing higher-order corrections (MHOUs).
- Scale variations around certain nominal choice by a factors of two (widely used). Ambiguities in the nominal scale choice, underestimation issues...
- More advanced approaches:
 - **Cacciari-Houdeau**: uniform prior pdf and Bayesian approach to determine confidence interval from behaviour of known perturbative coefficients.
 - Series acceleration method: e.g., **Passarino-David**, a uniform pdf assumed between known perturbative result and the approximate full result.

Figure 75: The cross section for Higgs boson production in gluon fusion calculated at increasing perturbative orders. At each order the theoretical uncertainty is shown for using scale variation (red circles), the C-H method (blue crosses), and the Scaled Parameter (green squares); at N^3LO the Passarino-David uncertainty based on series acceleration method is also shown (purple diamonds).

Illustration for Higgs production in gluon fusion at LHC 8 TeV up to approximate N3LO

Easy for a total rate; need to generate for correlations in differential observables

Missing higher orders - PDFs

- MHOU associated with the global analysis of PDFs, in e.g. QCD splitting kernels and matrix elements.

- **Global approaches** - comparing the outcome PDFs for fit at different orders. Gives ~ upper limit on MHOU. Can be comparable to PDF uncertainties.

- **Other approaches**: compare PDFs with different scale choices or more sophisticated treatment of the MHOU as correlated systematics.

R. Ball et al., JHEP 1504 (2015) 040

The NNLO standard - tools
Tools

• **APPLgrid** and **FastNLO**: tools for storing NLO calculations to grid, for fast convolution with arbitrary PDF set.
• Essential for precise PDF fits with NLO theory.
• Huge progress in **NNLO calculations**, but very computationally expensive - not directly usable in PDF fits.
• Simple (PDF dependent) **K-factors** generally used.

\[K_{\text{NNLO}} = \frac{\sigma_{\text{NNLO}}^i}{\sigma_{\text{NLO}}^i} \]

• Moving beyond this: the **APPLfast** project.

![Graph showing NNLO/NLO K-factors for inclusive jet production](image-url)
Tools

- **APPLfast** will make fast **NNLOJET** (IPPP, Zurich, ETH et al.) calculation feasible for inclusive W, Z, $Z +$ jet, $H +$ jet, inclusive jets in ep and pp...
- Compute once (~ 200K CPU hours)- after that in much less than a second!

C. Gwenlain, DIS2017

<table>
<thead>
<tr>
<th>job type</th>
<th># jobs</th>
<th>events/job</th>
<th>runtime/job</th>
<th># events</th>
<th>total output</th>
<th>total runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>10</td>
<td>140 M</td>
<td>20.6 h</td>
<td>1.4G</td>
<td>24 MB</td>
<td>206 h</td>
</tr>
<tr>
<td>NLO-R</td>
<td>200</td>
<td>6 M</td>
<td>19.0 h</td>
<td>1.2G</td>
<td>1.3 GB</td>
<td>3800 h</td>
</tr>
<tr>
<td>NLO-V</td>
<td>200</td>
<td>5 M</td>
<td>21.2 h</td>
<td>1.0G</td>
<td>1.2 GB</td>
<td>4240 h</td>
</tr>
<tr>
<td>NNLO-RRa</td>
<td>5000</td>
<td>60 M</td>
<td>22.5 h</td>
<td>0.3G</td>
<td>26 GB</td>
<td>112500 h</td>
</tr>
<tr>
<td>NNLO-RRb</td>
<td>5000</td>
<td>40 M</td>
<td>20.3 h</td>
<td>0.2G</td>
<td>27 GB</td>
<td>101500 h</td>
</tr>
<tr>
<td>NNLO-RV</td>
<td>1000</td>
<td>200 M</td>
<td>19.8 h</td>
<td>0.2G</td>
<td>6.4 GB</td>
<td>19800 h</td>
</tr>
<tr>
<td>NNLO-VV</td>
<td>300</td>
<td>4 M</td>
<td>20.5 h</td>
<td>1.2G</td>
<td>2.0 GB</td>
<td>6150 h</td>
</tr>
<tr>
<td>total</td>
<td>11710</td>
<td>—</td>
<td>—</td>
<td>5.5G</td>
<td>64 GB</td>
<td>248196 h</td>
</tr>
</tbody>
</table>

3 x 11710 grids/tables + all NNLOJET output!
Final 3 files for analysis are $O(10\text{MB})$ each

- This will become the standard in the future.
- **Benchmarking** exercises (are fitters using comparable NLO, NNLO input grids?) and centralising to avoid ‘double counting’ should be looked at.
Electroweak corrections
Electroweak effects - cross sections

- **EW corrections** can contribute at same level as NNLO QCD corrections:
 \[\alpha_s(M_Z)^2 \sim \alpha_{EM}(M_Z) \]

- Particularly at **large \(p_\perp \)**/invariant mass due to the Sudakov logarithms. Can be crucial when confronting precision data at HL-LHC.

pT of top quark at LHC 13 TeV

35.8 fb\(^{-1}\) (13 TeV)

1. High mass Drell-Yan at LHC 13 TeV

2. E\(_T\) of direct photon at LHC 8 TeV

Czakon et al., arXiv:1705.04105

• In certain regions EW corrections must to be included in PDF fits for a good description of the data; impact on PDFs can be significant.
The photon PDF

- Potentially important part of EW corrections is due to initial-state photon contributions. Requires inclusion via photon PDF.
- Recap: 2016 studies indicated that contribution to DY, \(WW\), \(t\bar{t}\) … could be large at high mass, with large uncertainty.
- Issue for high precision HL-LHC, or higher HE-LHC energies? No!

\[\frac{dL}{d\ln M_X^2}, \sqrt{s} = 13 \text{ TeV} \]

\[\frac{d\sigma}{d\mu} \text{ [fb/TeV]}, \sqrt{s} = 13 \text{ TeV} \]

\[\gamma\gamma - \text{this work} \]
\[\gamma\gamma - \text{NNPDF} \]
\[gg \]
\[qq \]
\[gg \]
• ‘Agnostic’ approach of **NNPDF3.0QED** far **too conservative**. Photon PDF known to high precision in terms of measured $e p$ scattering.

• Put on truly quantitative footing by **LUXqed** set. Photon PDF **completely determined** in terms of (well known) F_2 and F_L structure functions.

\[
x f_{\gamma/p}(x, \mu^2) = \frac{1}{2\pi\alpha(\mu^2)} \int_x^1 \frac{dz}{z} \left\{ \int_{\frac{\mu^2}{1-z}}^{\frac{\mu^2}{Q^2}} \frac{dQ^2}{Q^2} \alpha^2(Q^2) \right. \\
\left. \left[\left(z p_{\gamma q}(z) + \frac{2x^2 m_p^2}{Q^2} \right) F_2(\frac{x}{z}, Q^2) - z^2 F_L \left(\frac{x}{z}, Q^2 \right) \right] \\
- \alpha^2(\mu^2) z^2 F_2 \left(\frac{x}{z}, \mu^2 \right) \right\}, \tag{6}
\]

A. Manohar et al., arXiv:1708.01256
• Conclusion: photon PDF known to % level precision across relevant x.
• Moved beyond era of large photon PDF uncertainties. Photon has gone from being the poorest to the best constrained parton!

• Ongoing work: implementation into global PDF framework.
Electroweak effects - PDFs

- **EW corrections** to PDFs also important at high energies.
- Recent numerical study for unpolarized proton with generalized DGLAP evolution (LO) in the approximation of exact $SU(3) \times SU(2) \times U(1)$ symmetry.

full SM evolution vs. QCD only for quarks and gluon

- **Left handed**
- **Right handed**

C. W. Bauer et al., JHEP 1708 (2017) 036
Interesting comparisons on **EW boson PDF** luminosities at 14 and 27 TeV proton proton colliders are also available.

Chen et al., arXiv:1611.00788
PDFs with resummation
PDFs with resummation

• Higher **HL-LHC** integrated lumi will improve coverage at large x.
• **Threshold resummation** can be used there to improve perturbative expansion, construct approx. higher results…

• At **HE-LHC**, improved coverage of the small x region enhances the need for high-energy resummation.
• Small x (**high-energy/BFKL**) resummation might also be relevant for precision LHC phenomenology at Run II+III and in HL phase.
• PDFs and matrix elements should be treated consistently.

Kinematics of HE-LHC at $\sqrt{s}=27$ TeV

- **HE-LHC 27 TeV**
- **LHC 13 TeV**

Plot by J. Rojo, Oct 2017
PDFs with large-x resummation

- Close to a production threshold ($x = 1$) terms of the form $\alpha_s^k \ln^r (1 - x)$ are enhanced and need to be resummed to all orders.
- Working in Mellin space, a resummed partonic cross section can be constructed that includes terms of the type $\alpha_s^k \ln^p N$ to all orders.

$$
\sigma(N, Q^2) = \int_0^1 dx \, x^{N-2} \sigma(x, Q^2) = \sum_{a,b} \mathcal{L}_{ab}(N, Q^2) \hat{\sigma}_{ab}(N, Q^2, \alpha_s)
$$

$$
\hat{\sigma}^{(\text{res})}_{ab}(N, Q^2, \alpha_s) = \sigma^{(\text{born})}_{ab}(N, Q^2, \alpha_s) \, C^{(\text{res})}_{ab}(N, \alpha_s).
$$

$$
C^{(N\text{-soft})}(N, \alpha_s) = g_0(\alpha_s) \exp \mathcal{S}(\ln N, \alpha_s),
$$

$$
\mathcal{S}(\ln N, \alpha_s) = \left[\frac{1}{\alpha_s} g_1(\alpha_s \ln N) + g_2(\alpha_s \ln N) + \alpha_s g_3(\alpha_s \ln N) + \ldots \right]
$$

- Threshold-resumed partonic cross-sections available for many processes: **DIS, DY, jets, top quark pair**…
• A variant of the **NNPDF3.0** fit with (N)NLL threshold resummation was produced using the resummed DIS+DY partonic cross sections from the TROLL code

\[
\sigma_{\text{N}j\text{LO} + \text{N}^k\text{LL}} = \sigma_{\text{N}j\text{LO}} + \sigma_{\text{LO}} \times \Delta_j K_{\text{N}^k\text{LL}}
\]

M. Bonvini et al., JHEP 1509 (2015) 191

• Main effect is **suppression** of the large- \(x\) PDFs to compensate increase of resummed partonic cross-sections
Impact

- Large x resummed PDFs can be combined with threshold-resummed cross sections for e.g. high-mass SUSY production.
- Shift in central values comparable with PDF errors: important for limit settings (and even more in the case of discovery!)

PDFs with small-x resummation

• Perturbative fixed-order QCD calculations extremely successful in describing a wealth of data from pp and ep collisions.

• However, theoretical reasons to go beyond DGLAP: $\ln(1/x)$ become dominant at small x and need to be resummed to all orders.

• Small-x resummation can be matched to DGLAP and included into a PDF fit

\begin{align*}
DGLAP \\
\text{Evolution in } Q^2 \\
\mu^2 \frac{\partial}{\partial \mu^2} f_i(x, \mu^2) = \int_x^1 \frac{dz}{z} P_{ij} \left(\frac{x}{z}, \alpha_s(\mu^2) \right) f_j(z, \mu^2),
\end{align*}

\begin{align*}
\text{BFKL} \\
\text{Evolution in } x \\
-x \frac{d}{dx} f_+(x, \mu^2) = \int_0^\infty \frac{dv^2}{v^2} K \left(\frac{\mu^2}{v^2}, \alpha_s \right) f_+(x, v^2)
\end{align*}

• The N^k_{LO} fixed-order DGLAP splitting functions complemented with $N^{h\text{LL}}_x$ contributions from BFKL:

\[P_{ij}^{N^k_{\text{LO}}+N^{h\text{LL}}_x}(x) = P_{ij}^{N^k_{\text{LO}}}(x) + \Delta_k P_{ij}^{N^{h\text{LL}}_x}(x), \]

ABF, CCSS, TW and others, 94-08
• **NNPDF3.1sx**: Variant of **NNPDF3.1** global fits using **NLO+NLLx** and **NNLO+NLLx** theory

• **NNLO+NLLx** theory stabilises small-x gluon w.r.t. perturbative order

R.D. Ball, arXiv:1710.05935
To assess impact of small-x resummation on the HERA data, compute χ^2 removing data points in the region where resummation effects are expected.

- Using NNLO+NLLx theory, the χ^2 trend flattens.
- Excellent fit to HERA inclusive and charm data achieved in the entire (x, Q^2) region.
Implications for the HE-LHC

The use of PDFs with small (large) x resummation could improve predictions for low and medium (high) invariant masses at the HE-LHC/HL-LHC.
PDFs at a high energy ep/eA collider
PDFs at a high energy eh collider

- **LHeC**: e beam with $E = 60$ GeV colliding with the 7 TeV LHC p in concurrent ep and pp operation mode during HL-LHC.

- **Expands kinematic coverage of HERA** by more than an order of magnitude at small x and high Q^2.

- **Higher Luminosity and Q^2** - increased coverage at high x for clean PDF determination.

- Expanded coverage crucial for **nuclear PDFs** (no ‘nuclear HERA’ available).
• LHeC provides unprecedented precision for parton structure determination of protons/nuclei compared to LHC alone.

• Improvements both at small and high x (increased coverage/statistics) and for quark flavour separation (direct measurements of s, c, b structure functions), with less assumptions.
• Extended coverage probes novel dynamical regimes of QCD: BFKL dynamics, saturation, non-linear effects.

• Studies with pseudo-data can be used to quantify sensitivity to non-standard QCD effects.

• Measurements of the longitudinal structure function F_L represent smoking gun for such studies.

R.D. Ball, arXiv:1710.05935
• Many other important QCD/EW measurements possible: strong coupling to 0.1% (exp), 0.5% (theor), electroweak couplings….
• Possibility for N^3LO PDF extraction (given splitting functions).

• LHeC PDFs available in LHAPDF format.

• Work actively ongoing on studies/projections. Expect updates next year for input to European Strategy.
Conclusions and Outlook

• The HL-LHC/HE-LHC projects raises many new questions, challenges and opportunities for PDF fitters:
 ‣ High precision PDFs, dealing with high precision data.
 ‣ Include EW corrections systematically.
 ‣ Complete treatment of theoretical uncertainties.
 ‣ The NNLO standard - tools being developed for this. Benchmarking exercises worthwhile.
 ‣ Extended high/low x reach: important of resummation?
 ‣ Increasingly precise/differential LHC data great opportunity but also challenge for PDF groups to include in fit.

• The LHeC proposal:
 ‣ Greatly extend HERA reach in x and Q^2. Huge potential for clean and precise extraction of PDFs.
 ‣ Many other possibilities: probes of low x physics, nuclear PDFs, many precicision EW/QCD measurements.
 ‣ Ongoing and active project.
Backup
PDF luminosities

NNLO, LHC 13 TeV

NNLO, LHC 27 TeV

\(\frac{L_{qq}}{L_{qg}} \) [ref] NNLO, LHC 27 TeV

\(\frac{L_{qg}}{L_{qq}} \) [ref] NNLO, LHC 13 TeV