

EFT in VBF and VBS

Michael Rauch | HL-/HE-LHC Workshop, 31 Oct 2017

INSTITUTE FOR THEORETICAL PHYSICS

www.kit.edu

Motivation

- Vector-Boson Fusion (VBF) and Vector-Boson Scattering (VBS) important processes for HL-/HE-LHC [→ talks by Jan Kieseler, Claire Lee]
- searches for new physics important task
- useful tool for heavy new physics: effective field theory (EFT)

assumption: new physics is heavy can integrate out heavy, non-SM degrees of freedom higher-dimensional operators appearing in Lagrangian

$$\mathcal{L}_{\mathsf{EFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{d>4} \sum_{i} \frac{f_{i}^{(d)}}{\Lambda^{d-4}} \mathcal{O}_{i}^{(d)}$$

- operators O contain SM fields only
- respect SM gauge symmetries
- suppressed by $1/\Lambda^{d-4}$ (Λ : scale of new physics)
 - \rightarrow keep only leading order(s) (lowest dimension d = 6)
- building blocks:
 - Higgs field Φ
 - (covariant) derivative ∂^{μ}, D^{μ}
 - field strength tensors G^{μν}, W^{μν}, B^{μν}
 - fermion fields ψ

Linear Lagrangian

linear realization of the EFT

[Buchmüller, Wyler; Hagiwara et al; Grzadkowski et al; ...]

- D6: 59 operators when assuming
 - baryon/lepton-number conservation
 - flavour universality

List of Operators (only gauge and Higgs couplings)

$$\begin{split} \mathcal{O}_{W} &= \left(D_{\mu} \Phi \right)^{\dagger} \widehat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) \\ \mathcal{O}_{WW} &= \Phi^{\dagger} \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi \\ \mathcal{O}_{WW} &= Tr \left[\widehat{W}^{\mu}{}_{\nu} \widehat{W}^{\nu}{}_{\rho} \widehat{W}^{\rho}{}_{\mu} \right] \\ \mathcal{O}_{\widetilde{W}} &= \left(D_{\mu} \Phi \right)^{\dagger} \widetilde{W}^{\mu\nu} \left(D_{\nu} \Phi \right) \\ \mathcal{O}_{\widetilde{W}} &= \left(D_{\mu} \Phi \right)^{\dagger} \widetilde{W}^{\mu\nu} \left(D_{\nu} \Phi \right) \\ \mathcal{O}_{\widetilde{W}} &= \Phi^{\dagger} \widetilde{W}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi \\ \mathcal{O}_{\widetilde{B}B} &= \Phi^{\dagger} \widetilde{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{\widetilde{B}B} &= \Phi^{\dagger} \widetilde{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{\widetilde{B}B} &= \Phi^{\dagger} \widetilde{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi \end{split}$$

One constraint on CP-odd operators

$$\mathcal{O}_{\widetilde{W}} + \frac{1}{2}\mathcal{O}_{\widetilde{W}W} = \mathcal{O}_{\widetilde{B}} + \frac{1}{2}\mathcal{O}_{\widetilde{B}B}$$

Additional CP-even operator

$$\mathcal{O}_{\phi W} = \operatorname{Tr} \left[W^{\mu \nu} W_{\mu \nu} \right] \Phi^{\dagger} \Phi \equiv 2 \mathcal{O}_{WW}$$

Vertex Contributions

List of Operators (only gauge and Higgs couplings)

$$\begin{split} \mathcal{O}_W &= \left(D_\mu \Phi \right)^\dagger \, \widehat{W}^{\mu\nu} \left(D_\nu \Phi \right) \\ \mathcal{O}_{WW} &= \Phi^\dagger \, \widehat{W}_{\mu\nu} \, \widehat{W}^{\mu\nu} \Phi \\ \mathcal{O}_{WWW} &= \mathrm{Tr} \left[\widehat{W}^\mu{}_\nu \, \widehat{W}^\nu{}_\rho \, \widehat{W}^\rho{}_\mu \right] \\ \mathcal{O}_{\widetilde{W}} &= \left(D_\mu \Phi \right)^\dagger \, \widetilde{W}^{\mu\nu} \left(D_\nu \Phi \right) \\ \mathcal{O}_{\widetilde{W}W} &= \Phi^\dagger \, \widetilde{W}_{\mu\nu} \, \widehat{W}^{\mu\nu} \Phi \\ \mathcal{O}_{\widetilde{W}WW} &= \mathrm{Tr} \left[\widetilde{W}^\mu{}_\nu \, \widehat{W}^\nu{}_\rho \, \widehat{W}^\rho{}_\mu \right] \end{split}$$

$$\begin{split} \mathcal{O}_{\mathcal{B}} &= \left(D_{\mu} \Phi \right)^{\dagger} \widehat{B}^{\mu\nu} \left(D_{\nu} \Phi \right) \\ \mathcal{O}_{\mathcal{B}\mathcal{B}} &= \Phi^{\dagger} \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{\phi,2} &= \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \\ \mathcal{O}_{\widetilde{\mathcal{B}}} &= \left(D_{\mu} \Phi \right)^{\dagger} \widetilde{B}^{\mu\nu} \left(D_{\nu} \Phi \right) \\ \mathcal{O}_{\widetilde{\mathcal{B}}\mathcal{B}} &= \Phi^{\dagger} \widetilde{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi \end{split}$$

Modification of corresponding triple-gauge-coupling vertices:

	\mathcal{O}_{WWW}	\mathcal{O}_W	\mathcal{O}_B	\mathcal{O}_{WW}	\mathcal{O}_{BB}	$\mathcal{O}_{\phi,2}$	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\widetilde{W}}$	$\mathcal{O}_{\widetilde{B}}$	$\mathcal{O}_{\widetilde{W}W}$	$\mathcal{O}_{\widetilde{B}B}$
WWZ	Х	Х	Х				X	X	X		
$WW\gamma$	Х	Х	х				Х	Х	Х		
HWW		Х		Х		Х		Х		Х	
HZZ		Х	х	Х	х	Х		Х	х	Х	х
$HZ\gamma$		х	х	Х	х	(X)		Х	х	Х	х
$H\gamma\gamma$				Х	х	(X)				Х	х
WWWW	Х	Х					Х				
WWZZ	Х	Х					Х				
$WWZ\gamma$	Х	х					Х				
$WW\gamma\gamma$	Х						Х				

Dimension-8

Bosonic dimension-8 operators

(D6 could be loop-induced \rightarrow D8 effects can become sizable [Arzt, Einhorn, Wudka])

$$\begin{split} \mathcal{O}_{S,0} &= \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right] \\ \mathcal{O}_{S,1} &= \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right] \\ \mathcal{O}_{S,2} &= \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\nu} \Phi)^{\dagger} D^{\mu} \Phi \right] \end{split}$$

$$\begin{split} \mathcal{O}_{M,0} &= \mathrm{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi\right] \\ \mathcal{O}_{M,1} &= \mathrm{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\nu\beta}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi\right] \\ \mathcal{O}_{M,2} &= \left[\widehat{B}_{\mu\nu}\widehat{B}^{\mu\nu}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi\right] \\ \mathcal{O}_{M,3} &= \left[\widehat{B}_{\mu\nu}\widehat{B}^{\nu\beta}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi\right] \\ \mathcal{O}_{M,4} &= \left[(D_{\mu}\Phi)^{\dagger}\widehat{W}_{\beta\nu}D^{\mu}\Phi\right] \times \widehat{B}^{\beta\nu} \\ \mathcal{O}_{M,5} &= \left[(D_{\mu}\Phi)^{\dagger}\widehat{W}_{\beta\nu}\widehat{W}^{\rho}\Phi\right] \times \widehat{B}^{\beta\mu} \\ \mathcal{O}_{M,7} &= \left[(D_{\mu}\Phi)^{\dagger}\widehat{W}_{\beta\nu}\widehat{W}^{\beta\mu}D^{\nu}\Phi\right] \end{split}$$

$$\begin{split} \mathcal{O}_{T,0} &= \mathsf{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right] \times \mathsf{Tr}\left[\widehat{W}_{\alpha\beta}\widehat{W}^{\alpha\beta}\right] \\ \mathcal{O}_{T,1} &= \mathsf{Tr}\left[\widehat{W}_{\alpha\nu}\widehat{W}^{\mu\beta}\right] \times \mathsf{Tr}\left[\widehat{W}_{\mu\beta}\widehat{W}^{\alpha\nu}\right] \\ \mathcal{O}_{T,2} &= \mathsf{Tr}\left[\widehat{W}_{\alpha\mu}\widehat{W}^{\mu\beta}\right] \times \mathsf{Tr}\left[\widehat{W}_{\beta\nu}\widehat{W}^{\nu\alpha}\right] \\ \mathcal{O}_{T,5} &= \mathsf{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right] \times \widehat{B}_{\alpha\beta}\widehat{B}^{\alpha\beta} \\ \mathcal{O}_{T,6} &= \mathsf{Tr}\left[\widehat{W}_{\alpha\nu}\widehat{W}^{\mu\beta}\right] \times \widehat{B}_{\mu\beta}\widehat{B}^{\alpha\nu} \\ \mathcal{O}_{T,7} &= \mathsf{Tr}\left[\widehat{W}_{\alpha\mu}\widehat{W}^{\mu\beta}\right] \times \widehat{B}_{\beta\nu}\widehat{B}^{\nu\alpha} \\ \mathcal{O}_{T,8} &= \widehat{B}_{\mu\nu}\widehat{B}^{\mu\nu}\widehat{B}_{\alpha\beta}\widehat{B}^{\alpha\beta} \\ \mathcal{O}_{T,9} &= \widehat{B}_{\alpha\mu}\widehat{B}^{\mu\beta}\widehat{B}_{\beta\nu}\widehat{B}^{\nu\alpha} \end{split}$$

[Eboli, Gonzalez-Garcia]

- \rightarrow each operators contains at least four bosons
- \Rightarrow leading contribution to quartic gauge coupling

Non-linear EFT

KIT Karbruhe Institute of Technology

Also possible to use non-linear EFT (electroweak chiral Lagrangian) based on power counting in terms of canonical dimension

[Appelquist; Longhitano; ...; Alboteanu, Kilian, Reuter; ...]

$$egin{split} \mathcal{L}_4 &= lpha_4 \left(\mathsf{Tr} \left[\textit{V}_\mu \, \textit{V}_
u
ight]
ight)^2 \;, \ \mathcal{L}_5 &= lpha_5 \left(\mathsf{Tr} \left[\textit{V}_\mu \, \textit{V}^\mu
ight]
ight)^2 \;, \end{split}$$

$$\begin{split} \mathcal{L}_{\mathcal{S},0} &= F_{\mathcal{S},0} \operatorname{Tr} \left[(D_{\mu} \hat{H})^{\dagger} D_{\nu} \hat{H} \right] \times \operatorname{Tr} \left[(D^{\mu} \hat{H})^{\dagger} D^{\nu} \hat{H} \right] \,, \\ \mathcal{L}_{\mathcal{S},1} &= F_{\mathcal{S},1} \operatorname{Tr} \left[(D_{\mu} \hat{H})^{\dagger} D^{\mu} \hat{H} \right] \times \operatorname{Tr} \left[(D_{\nu} \hat{H})^{\dagger} D^{\nu} \hat{H} \right] \,. \end{split}$$

with

$$\begin{split} V_{\mu} &= \Sigma \left(D_{\mu} \Sigma \right)^{\dagger} = - \left(D_{\mu} \Sigma \right) \Sigma^{\dagger} ,\\ D_{\mu} \Sigma &= \partial_{\mu} \Sigma + ig \frac{\sigma^{a}}{2} W_{\mu}^{a} \Sigma - ig' \Sigma B_{\mu} \frac{\sigma^{3}}{2} ,\\ \Sigma &= \exp \left(-\frac{i}{v} \sigma^{a} w^{a} \right) \stackrel{\text{unitary gauge}}{=} 1 \\ \hat{H} &= \frac{1}{2} \begin{pmatrix} v + H - iw^{3} & -i(w^{1} - iw^{2}) \\ -i(w^{1} + iw^{2}) & v + H + iw^{3} \end{pmatrix} \stackrel{\text{unitary gauge}}{=} \frac{v + H}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{split}$$

Experimental Projections

Some projection studies available for HL-LHC ATLAS:

Darameter	dimension	channel	A [TeV]	300 fb ⁻¹ 30	3000)0 fb ⁻¹	
1 arameter			NUV [ICV]	5σ	95% CL	5σ	95% CL
$c_{\phi W}/\Lambda^2$	6	ZZ	1.9	34 TeV ⁻²	20 TeV ⁻²	16 TeV ⁻²	9.3 TeV ⁻²
f_{S0}/Λ^4	8	$W^{\pm}W^{\pm}$	2.0	10 TeV ⁻⁴	6.8 TeV ⁻⁴	4.5 TeV ⁻⁴	0.8 TeV ⁻⁴
f_{T1}/Λ^4	8	WZ	3.7	1.3 TeV ⁻⁴	0.7 TeV ⁻⁴	0.6 TeV ⁻⁴	0.3 TeV ⁻⁴
f_{T8}/Λ^4	8	Ζγγ	12	0.9 TeV ⁻⁴	0.5 TeV ⁻⁴	0.4 TeV ⁻⁴	0.2 TeV ⁻⁴
f_{T9}/Λ^4	8	Ζγγ	13	$2.0 {\rm TeV^{-4}}$	0.9 TeV ⁻⁴	0.7 TeV ⁻⁴	0.3 TeV ⁻⁴

CMS (WZjj):

Significance	3σ	5σ
SM EWK scattering discovery	75 fb ⁻¹	$185 {\rm fb}^{-1}$
f_{T1}/Λ^4 at 300 fb ⁻¹	$0.8 { m TeV^{-4}}$	$1.0 { m TeV^{-4}}$
f_{T1}/Λ^4 at 3000 fb $^{-1}$	$0.45 { m TeV^{-4}}$	0.55 TeV^{-4}

 \rightarrow test energy scales up to

•
$$f = \frac{1}{16\pi^2}$$
: $\Lambda = 0.4 \text{ TeV}$

Unitarity Violation

Important gauge cancellations between different diagram types

• longitudinal *W* scattering through quartic gauge boson vertex

high energy limit: centre-of-mass energy $\sqrt{s}
ightarrow \infty$

 $\mathcal{M}_{ ext{quartic vertex}} \propto s^2 \quad o ext{cross section diverges} \quad \sigma \propto s^4/s = s^3 o \infty$

Gauge boson with momentum $\vec{p} = (0, 0, p)^T$:

longitudinal polarization vector:

$$\epsilon_L^{\mu} = \frac{1}{M} (p, 0, 0, E)^T \stackrel{E \gg M}{=} \frac{p^{\mu}}{M}$$

Unitarity Violation

Important gauge cancellations between different diagram types

• longitudinal *W* scattering through quartic gauge boson vertex

high energy limit: centre-of-mass energy $\sqrt{s} \to \infty$ $\mathcal{M}_{quartic vertex} \propto s^2 \to cross section diverges \quad \sigma \propto s^4/s = s^3 \to \infty$ add triple gauge boson vertices

 $\mathcal{M}_{ ext{quartic+triple vertices}} \propto \textbf{\textit{s}}
ightarrow ext{still divergent}$

Unitarity Violation

Important gauge cancellations between different diagram types

• longitudinal W scattering through quartic gauge boson vertex

high energy limit: centre-of-mass energy $\sqrt{s} \to \infty$ $\mathcal{M}_{quartic \, vertex} \propto s^2 \rightarrow cross \, section \, diverges \quad \sigma \propto s^4/s = s^3 \to \infty$ add triple gauge boson vertices

 $\mathcal{M}_{\text{quartic+triple vertices}} \propto s \rightarrow \text{still divergent}$ additional Higgs diagrams

remove divergence exactly $\mathcal{M} \propto \text{const.}$ $\sigma \propto 1/s \rightarrow 0$ Anomalous gauge couplings spoil cancellation \rightarrow stringent tests

Unitarization

Anomalous gauge couplings spoil cancellation

 \leftrightarrow effects can become large \rightarrow unitarity violation \rightarrow unphysical

Several solutions:

- consider only unitarity-conserving phase-space regions loses some information → possibly reduced sensitivity cut on relevant region might not be directly accessible (m_{4ℓ} vs. neutrinos)
- (dipole) form factor multiplying amplitudes

$$\mathcal{F}(s) = \frac{1}{\left(1 + \frac{s}{\Lambda_{FF}^2}\right)^n} \qquad \qquad \Lambda_{FF}^2, \ n: \text{free parameters}$$

K-/T-matrix unitarization [Alboteanu, Kilian, Reuter, Sekulla] based on partial-wave analysis [Jacob, Wick] project amplitude back onto Argand circle 0.4 0.8 lâ00-i/2 0.2 0.6 3e(a⁰0) 0 k_{i} Be(a)0.4 -0.2 SM (EV) 0.2 form fac -0.4 anom cour ٥ 500 1000 1500 2000 500 1000 1500 2000 √s [GeV] √s [GeV]

Unitarization

red band: one/all partial-wave amplitudes saturated

Impact of Current Limits

Investigate impact of D6 vs D8 operators on VBS

D6 input: Global Higgs and Gauge analysis of run-I data

[Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, MR]

Take results and apply to vector-boson scattering

 \Rightarrow No contribution from \mathcal{O}_{GG} and fermionic operators

f_{χ}/Λ^2 [TeV ⁻²]	LHC-Higgs + LHC-TGV + LEP-TGV				
	Best fit	95% CL interval			
f _{WW}	-0.1	(-3.1, 3.7)			
f _{BB}	0.9	(-3.3, 6.1)			
f _W	1.7	(-0.98, 5.0)			
f _B	1.7	(-11.8, 8.8)			
fwww	-0.06	(-2.6, 2.6)			
$f_{\phi,2}$	1.3	(-7.2, 7.5)			

For simplicity: use pos. and neg. 95% CL bound with other parameters set to zero \rightarrow slightly larger effect than true 95% CL bound

Additionally:

effect from dimension-8 operator $\mathcal{O}_{\mathcal{S},1}$

using CMS, $W^{\pm}W^{\pm}jj$, $\sqrt{S} = 8$ TeV, no unitarization [arXiv:1410.6315]

 $f_{S,1}/\Lambda^4 \in (-118, 120)$ TeV⁻⁴ (for $f_{S,0}/\Lambda^4 = 0$)

Results

Process: $pp \rightarrow W^+W^+jj \rightarrow \ell^+ \nu \ell^+ \nu jj$, $\sqrt{S} = 13$ TeV, VBF cuts, NLO QCD

- last bin: overflow bin, m_{4ℓ} > 2000 GeV
- effect of D6 contributions in general small; largest one by O_{WWW}
- D8 operator clearly dominating

Results

cross section when requiring $m_{4\ell} > m_{4\ell}^{\text{cut}}$

• \mathcal{O}_{WWW} contribution large only for very high $m_{4\ell} \leftrightarrow$ low event counts

excess of 10 events for $m_{4\ell} > 1$ TeV, $\mathcal{L} = 100$ fb⁻¹, SM contrib. of 10 events other D6 operators below 1 event

 \leftrightarrow unitarity violating contributions (?)

O_{S1} yielding large excess even without cuts on m_{4l}

excess of almost 500 events for $m_{4\ell} > 1$ TeV, $\mathcal{L} = 100$ fb⁻¹ even after unitarization excess of 37 events

Conclusions & Open Tasks

- EFT formulation useful tool to parametrize new-physics
- contribution to anomalous triple and quartic gauge couplings
- strong growth with energy
 - \rightarrow unitarity violation in experimentally probed region
 - \Rightarrow need some mitigation procedure (cut, form factor, T-matrix, ...)
- effect of dimension-6 operators in VBF/VBS processes in general small 13/14 TeV diboson data will further reduce the allowed contributions final accuracy vs effects in VBF/VBS
- effect of dimension-8 operators dominates
 - \rightarrow constraining power of experimental results
 - \rightarrow expectations for HE-LHC

Backup

Backup

Dimension-8

Hiccups of the original version:

vanish identically:

$$\mathcal{O}_{T,3} = \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \widehat{W}^{\nu\alpha} \right] \times \widehat{B}_{\beta\nu}$$
$$\mathcal{O}_{T,4} = \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\alpha\mu} \widehat{W}^{\beta\nu} \right] \times \widehat{B}_{\beta\nu}$$

redundant:

$$egin{aligned} \mathcal{O}_{M,6} &= \left[(D_\mu \Phi)^\dagger \widehat{W}_{eta
u} \widehat{W}^{eta
u} D^\mu \Phi
ight] \ &= rac{1}{2} \mathcal{O}_{M,0} \end{aligned}$$

missing:

$$\mathcal{O}_{\mathcal{S},2} = \left[(\mathcal{D}_{\mu} \Phi)^{\dagger} \mathcal{D}_{\nu} \Phi \right] \times \left[(\mathcal{D}^{\nu} \Phi)^{\dagger} \mathcal{D}^{\mu} \Phi \right]$$

Dimension-8

	$\mathcal{O}_{S,0},\ \mathcal{O}_{S,1},\ \mathcal{O}_{S,2}$	$\mathcal{O}_{M,0},\ \mathcal{O}_{M,1},\ \mathcal{O}_{M,7}$	0 _{M,2} , 0 _{M,3} , 0 _{M,4} , 0 _{M,5}	$\mathcal{O}_{T,0}, \\ \mathcal{O}_{T,1}, \\ \mathcal{O}_{T,2}$	$\mathcal{O}_{T,5},$ $\mathcal{O}_{T,6},$ $\mathcal{O}_{T,7}$	0 _{Т,8} , О _{Т,9}
WWWW	Х	Х		Х		
WWZZ	Х	Х	Х	Х	Х	
ZZZZ	Х	Х	Х	Х	Х	Х
$WWZ\gamma$		Х	Х	Х	Х	
$WW\gamma\gamma$		Х	Х	Х	Х	
$ZZZ\gamma$		Х	Х	Х	Х	Х
$ZZ\gamma\gamma$		Х	Х	Х	Х	Х
$Z\gamma\gamma\gamma$				Х	Х	Х
$\gamma\gamma\gamma\gamma$				Х	Х	х

Contribution to the different vertices:

Relation non-linear to linear EFT

Relations between linear and non-linear EFT

$$\begin{aligned} \alpha_4 &= \frac{v^4}{16} F_{S,0} = \frac{v^4}{16} \frac{f_{S,0} + f_{S,2}}{\Lambda^4} , \qquad f_{S,0} = f_{S,2} \\ \alpha_5 &= \frac{v^4}{16} F_{S,1} = \frac{v^4}{16} \frac{f_{S,1}}{\Lambda^4} \end{aligned}$$

Linear-EFT scenarios with $f_{S,0} \neq f_{S,2}$ need additional operator

 $\mathcal{L}_{6} = \alpha_{6} \operatorname{Tr} \left[V_{\mu} V_{\nu} \right] \operatorname{Tr} \left[T V^{\mu} \right] \operatorname{Tr} \left[T V^{\nu} \right]$

with $T = \Sigma \sigma_3 \Sigma^{\dagger}$

isospin-breaking

Results

 $\begin{array}{l} \text{Process:} \\ pp \rightarrow W^+ Zjj \\ \rightarrow \ell^+ \nu \ell^+ \ell^- jj, \\ \sqrt{S} = 13 \text{ TeV}, \text{ VBF cuts}, \\ \text{NLO QCD} \end{array}$

exactly the same picture as in W^+W^+jj case