

Precision measurements of electroweak parameters at the HL-LHC

Alexander A. Savin University of Wisconsin, Madison, USA

HL-LHC Workshop, CERN, October 30 - November 1, 2017

A.Savin, UW

Introduction

 SM parameters - direct measurements and global fits • Well measured α_{em}, G_F, m_Z • Not subject of this talk $\alpha_{\rm S}, m_t, m_H$ Discussed here $m_W, \Gamma_W, \sin^2\theta_W$

Standard Model Parameters

Some parameters are constrained

$$\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2} \qquad m_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2}G_F}$$

but modified by high-order corrections

05/09/2017

A.Savin, UW

Direct measurements and global fit Gfitter <u>arXiv:1407.3792</u>

Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	
$M_H~[{ m GeV}]^{(\circ)}$	125.14 ± 0.24	yes	125.14 ± 0.24	93^{+25}_{-21}	
$M_W~[{ m GeV}]$	80.385 ± 0.015	_	80.364 ± 0.007	80.358 ± 0.008	
$\Gamma_W ~[{ m GeV}]$	2.085 ± 0.042	-	2.091 ± 0.001	2.091 ± 0.001	
$\overline{M_Z [{ m GeV}]}$	91.1875 ± 0.0021	yes	91.1880 ± 0.0021	91.200 ± 0.011	
Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4950 ± 0.0014	2.4946 ± 0.0016	
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.484 ± 0.015	41.475 ± 0.016	
R^0_ℓ	20.767 ± 0.025	_	20.743 ± 0.017	20.722 ± 0.026	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	-	0.01626 ± 0.0001	0.01625 ± 0.0001	
A_ℓ (*)	0.1499 ± 0.0018	_	0.1472 ± 0.0005	0.1472 ± 0.0005	
${ m sin}^2 heta_{ m eff}^\ell(Q_{ m FB})$	0.2324 ± 0.0012	-	0.23150 ± 0.00006	0.23149 ± 0.00007	
A_c	0.670 ± 0.027	—	0.6680 ± 0.00022	0.6680 ± 0.00022	
A_b	0.923 ± 0.020	-	0.93463 ± 0.00004	0.93463 ± 0.00004	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	0.0738 ± 0.0003	0.0738 ± 0.0003	
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	-	0.1032 ± 0.0004	0.1034 ± 0.0004	
R_c^0	0.1721 ± 0.0030	_	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	
R_b^0	0.21629 ± 0.00066	-	0.21578 ± 0.00011	0.21577 ± 0.00011	
$\overline{m}_c [{ m GeV}]$	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	_	
$\overline{m}_b [{ m GeV}]$	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	_	
$m_t [{ m GeV}]$	173.34 ± 0.76	yes	$173.81 \pm 0.85^{(\bigtriangledown)}$	$177.0^{+2.3}_{-2.4}(\bigtriangledown)$	
$\Delta lpha_{ m had}^{(5)}(M_Z^2)^{(\dagger riangle)}$	2757 ± 10	yes	2756 ± 10	2723 ± 44	
$lpha_s(M_Z^2)$	_	yes	0.1196 ± 0.0030	0.1196 ± 0.0030	

arXiv:1608.01509

A.Savin, UW

Similar results in HEPfit

Measurements discussed in this talk

- W mass
 - ATLAS: arXiv:1701.07240
- W width
 - CMS: JHEP 10 (2011) 132
- Forward-Backward asymmetry A_{fb} and sin²θ_{eff}
 - CMS: CMS-PAS-SMP-16-007
 - ATLAS: JHEP 1509 (2015) 49
 - LHCb: JHEP 1511 (2015) 190
 - CMS: CMP-PAS-FTR-17-001

and their possible future at the HL-LHC ...

ATLAS W mass measurement

arXiv:1701.07240

W production at LHC

- D0 (Phys.Rev.Lett. 108 (2012) 151804 80.367 ± 0.023 GeV
- CDF (Phys.Rev.Lett. 108 (2012) 151803 80.387 ± 0.019 GeV
- In pp collisions at the LHC
 - Events are distributed between positive and negative helicity states PDF uncertainty
 - HF contribution (25% of events) W p_T
 - Z can be used for different calibrations and for checks, measurements can be performed in Z events and transformed to W
 - When going to HL-LHC high PU up to 200 !

Main experimental observables

Lepton kinematics:

$$p_T^l, \eta_l, \phi_l, m_l$$

Recoil to transverse plain

$$\vec{u}_{\rm T} = \sum_i \vec{E}_{{\rm T},i}$$

Transverse momentum of neutrino

$$\vec{p}_{\rm T}^{\rm miss} = -\left(\vec{p}_{\rm T}^{\,\ell} + \vec{u}_{\rm T}\right)$$

W-boson transverse mass

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\rm miss}(1-\cos\Delta\phi)}$$

Analysis strategy

$p_T^{i} > 30 GeV;$	$ \eta_{\ell} $ range	0-0.8	0.8–1.4	1.4–2.0	2.0–2.4	Inclusive
$u_T < 30 GeV;$	$W^+ ightarrow \mu^+ u$ $W^- ightarrow \mu^- ar{ u}$	1 283 332 1 001 592	1 063 131 769 876	1 377 773 916 163	885 582 547 329	4 609 818 3 234 960
$p_{\pi}^{miss} > 30 GeV$	$ \eta_{\ell} $ range	0–0.6	0.6–1.2		1.8–2.4	Inclusive
$PT \rightarrow 500000$,	$W^+ \rightarrow e^+ \nu$	1 233 960	1 207 136		956 620	3 397 716
$m_T > 60 GeV$	$W^- \rightarrow e^- \bar{\nu}$	969 170	908 327		610 028	2 487 525
		-				

The mass of W boson is defined from the fit to:

$$p_T^{\prime}, m_T$$

templates for signal+background for different W masses are compared to data using χ^2 - interpolation + minimization of χ^2 function.

Calibration of electrons and muons

Corr. of imperfect simulation/calibration of detector response. Applied to simulation/muon sagitta bias + electron energy - to data

m_{II} [GeV]

Systematics N

$ \eta_{\ell} $ range	[0.0	0, 0.8]	[0.	8, 1.4]	[1.4	4, 2.0]	[2	2.0, 2.4]	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^ℓ	m_{T}
δm _W [MeV]										\$
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	115.4	8.4	8.8
Momentum resolution	1.8	2.0	1.9	1.7	1.5	2.2	3.4	3.8	1.0	1.2
Sagitta bias	0.7	0.8	1.7	1.7	3.1	3.1	4.5	4.3	0.6	0.6
Reconstruction and								\		
isolation efficiencies	4.0	3.6	5.1	3.7	4.7	3.5	6.4	5.5	2.7	2.2
Trigger efficiency	5.6	5.0	7.1	5.0	11.8	9.1	12.1	9.9	4.1	3.2
Total	11.4	11.4	16.9	17.0	30.4	31.0	112.0	116.1	9.8	9.7

$ \eta_{\ell} $ range	[0.0	0,0.6]	[0.0	6, 1.2]	[1.82	2, 2.4]	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	$P_{\rm r}^{\ell}$	m_{T}
δm_W [MeV]							V	
Energy scale	10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
Energy resolution	5.0	6.0	7.3	6.7	10.4	15.5	3.5	5.5
Energy linearity	2.2	4.2	5.8	8.9	8.6	10.6	3.4	5.5
Energy tails	2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficiency	10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
Identification efficiency	10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
Trigger and isolation efficiencies	0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
Charge mismeasurement	0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
Total	19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3
							.,	

Recoil calibration

Event activity correction:

Pile-up

05/09/2017

Transverse momentum

- Beam effects
- Offset of IP

W-boson charge		V^+	W^-		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
$\langle \mu \rangle$ scale factor	0.2	1.0	0.2	1.0	0.2	1.0
$\Sigma \bar{E_{\rm T}}$ correction	0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)	2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)	1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections ($Z \rightarrow W$ extrapolation)	0.2	5.8	0.2	4.3	0.2	5.1
Total	2.6	14.2	2.7	11.8	2.6	13.0

hadronic recoil Úт

Residual correction:

W/Z production and decay simulation¹² Reweighted Powheg + Pythia 8 MC

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_1\,\mathrm{d}p_2} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}},y)}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} \left(\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right)^{-1}\right] \left[(1+\cos^2\theta) + \sum_{i=0}^7 A_i(p_{\mathrm{T}},y)P_i(\cos\theta,\phi)\right],$$

Low p_T, NP effects using Pythia 8 + AZ tune

W/Z production and decay simulation[®]

Validation of QCD parameters in Pythia 8 - AZ tune. Good description of p_T

W-boson charge	И	7+	и	7-	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Major uncertainty is PDF, second largestPS (see separated talks on PDF)

05/09/2017

Speaker: Amanda Sarkar (University of Oxford (GB))

W mass measurement, diff. categories

 $m_W = 80369.5 \pm 6.8 \text{ MeV(stat.)} \pm 10.6 \text{ MeV(exp. syst.)} \pm 13.6 \text{ MeV(mod. syst.)}$

= 80369.5 \pm 18.5 MeV,

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
m_{T} - p_{T}^{ℓ} , W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

W mass perspectives at the HL-LHC χ^2/dof Combined Value Elec. Recoil Bckg. Stat. Muon OCD EW PDF Total categories Unc. Unc. Unc. Unc. Unc. Unc. Unc. Unc. of Comb. [MeV] Unc. 5.5 . m_{T} - p_{T}^{ℓ} , W^{\pm} , e- μ 80369.5 6.8 6.4 18.5 29/27 6.6 notice MP1 mul 2000 Cresumation Will be significantly reduced nuon and electron calibration Improvements in PDF uncertainties, combination of ATLAS/CMS and LHCb

W width measurement

Direct and indirect measurement on the W width

JHEP 10 (2011) 132

$$R = \frac{\sigma(pp \to WX)}{\sigma(pp \to ZX)} \frac{\mathcal{B}(W \to \ell\nu)}{\mathcal{B}(Z \to \ell^+ \ell^-)}$$

$$\mathcal{B}(W \to \ell \nu)$$

$$\mathcal{B}(\mathrm{W}
ightarrow \ell
u) = 0.106 \pm 0.003$$
 ,

 $\Gamma(W) = 2144 \pm 62 \ \text{MeV}$

$$\mathcal{B}(W o \ell \nu) = rac{\Gamma(W o \ell
u)}{\Gamma(W)}$$

05/09/zut/

16

Forward-Backward Asymmetry in Z's¹⁷

• Vector and axial-vector couplings in NC annihilation

$$q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell^+\ell^-$$

$$ar{f}(g_V^f+g_A^f\gamma_5)f_{A}$$

• Differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta)} = \frac{4\pi\alpha^2}{3\hat{s}} \left[\frac{3}{8} A(1+\cos^2\theta) + B\cos\theta \right]$$

 Collins-Soper frame, the events are classified to forward and backward in CS to calculate the A_{FB}

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

Effective mixing angle cms-pas-smp-16-007 $\sin^2 \theta_{eff}^{lept} = \operatorname{Re}[k_l(m_Z^2, \sin^2 \theta_W)] \sin^2 \theta_W$ This measurement constraints the W mass !

A_{FB} is measurement near Z mass peak is used

05/09/2017

A.Savin, UW

Dilution of A_{FB}

 A_{FB} PDF dependence; near Z peak is sensitive to leptonic $sin^2\theta_{eff}$

PYTHIA 8 0.6 LO NNPDF3.0 0.4 0.2 0.0 < |Y_| < 0.4 -0.2 < IY I < 0.8 |Y| < 1.2-0.4 < |Y | < 1.6 < IY I < 2.0 -0.6 2.0 < IY I < 2.4 -0.8 ----60 70 100 110 120 M_u (GeV)

Since ambiguity of the quark direction - is more significant at low |y|, the dilution of A_{FB} is also larger there -> the measurement is done in bins of |y| LHCb high rapidity - less dilution between parton and proton levels

Effective mixing angle measurement[®]

Minimizing χ^2 between data and templates POWHEG+PYTHIA8. CMS reweighting with cos Θ , ATLAS - central-central, central - forward etc categories

Uncertainties

channel	statistical uncertainty
muon	0.00044
electron	0.00060
combined	0.00036

Source	muons	electrons
MC statistics	0.00015	0.00033
Lepton momentum calibration	0.00008	0.00019
Lepton selection efficiency	0.00005	0.00004
Background subtraction	0.00003	0.00005
Pileup modeling	0.00003	0.00002
Total	0.00018	0.00039

Statistical

Experimental systematics

model variation	Muons	Electrons
Dilepton $p_{\rm T}$ reweighting	0.00003	0.00003
QCD $\mu_{R/F}$ scale	0.00011	0.00013
POWHEG MiNLO Z+j vs NLO Z model	0.00009	0.00009
FSR model (PHOTOS vs PYTHIA)	0.00003	0.00005
UE tune	0.00003	0.00004
Electroweak ($\sin^2 \theta_{eff}^{lept} - \sin^2 \theta_{eff}^{u, d}$)	0.00001	0.00001
Total	0.00015	0.00017

Theoretical systematics

PDF uncertainty

Channel	without constraining PDFs	with constraining PDFs
Muon	0.23125 ± 0.00054	0.23125 ± 0.00032
Electron	0.23054 ± 0.00064	0.23056 ± 0.00045
Combined	0.23102 ± 0.00057	0.23101 ± 0.00030

Experimental summary

 $\begin{aligned} \sin^2 \theta_{\rm eff}^{\rm lept} &= 0.23101 \pm 0.00036({\rm stat}) \pm 0.00018({\rm syst}) \pm 0.00016({\rm theory}) \pm 0.00030({\rm pdf}) \\ \sin^2 \theta_{\rm eff}^{\rm lept} &= 0.23101 \pm 0.00052. \end{aligned}$

Statistical uncertainty still dominate, followed by PDF, that was reduced by reweighting by 50% . Experimental uncertainties are relatively small , theoretical are dominated by QCD/scales A.Savin, UW

Effective mixing angle at HL-LHC

CMS: CMP-PAS-FTR-17-001

Effective mixing angle at HL-LHC

		_					
L _{int}	$\delta_{\mathrm{stat}}[10^{-5}]$		$\delta_{nnpdf3.}^{nomina}$	${}^{1}_{0}[10^{-5}]$	$\delta_{\mathrm{nnpdf3.0}}^{\mathrm{constrained}}[10^{-5}]$		
(fb^{-1})	$ \eta < 2.4$	$ \eta < 2.8$	$ \eta < 2.4$	$ \eta < 2.8$	$ \eta < 2.4$	$ \eta < 2.8$	
10	76	51	75	57	39	29	
100	24	16	75	57	27	20	
500	11	7	75	57	20	16	
1000	8	5	75	57	18	14	
3000	4	3	75	57	15	12	
19	43		49		27		
19 (from [1])	44		54		32		

Conclusions

- HL-LHC should allow for extremely precise measurements of the SM parameters
- The measurement should profit from extending of the pseudorapidity coverage of the experiments
- More work is needed to make a reasonable estimate of the possible measurements uncertainties

26

A.Savin, UW

Backup

Effective mixing angle

A_{FB} vs mass for different sinθ_{eff} in region 70-250 GeV;
 Oply 7 ToV with 4.8 fb⁻¹

Unly	/ lev	with	4.8	tD-

			$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$
CC electron	$0.2302 \pm$	0.0009(stat.)	$\pm 0.0008(\text{syst.}) \pm 0.0010(\text{PDF}) = 0.2302 \pm 0.0016$
CF electron	$0.2312 \pm$	0.0007(stat.)	$\pm 0.0008(\text{syst.}) \pm 0.0010(\text{PDF}) = 0.2312 \pm 0.0014$
Muon	$0.2307~\pm$	0.0009(stat.)	± 0.0008 (syst.) ± 0.0009 (PDF) = 0.2307 ± 0.0015
El. combined	$0.2308 \pm$	0.0006(stat.)	± 0.0007 (syst.) ± 0.0010 (PDF) $= 0.2308 \pm 0.0013$
Combined	$0.2308 \pm$	0.0005(stat.)	$\pm 0.0006(\text{syst.}) \pm 0.0009(\text{PDF}) = 0.2308 \pm 0.0012$

Compared to other experiments and PDG. LEP+SLC are the most precise

ATLAS: JHEP 1509 (2015) 49

A.Savin, UW

Direct measurements and global fit

	Measurement	HEPfit result	<u>ar)</u>
m _H ,GeV	125.09 ± 0.24	102.8 ± 26.3	
m _t ,GeV	173.34 ± 0.76	176.6 ± 2.5	
m _w ,GeV	80.385 ± 0.015	80.3604 ± 0.0066	

arXiv:1407.3792

Gfitter

Introduction

- EW motivation at LHC:
 - Cross sections, better understanding of SM predictions
 - Backgrounds for searches
 - SM parameters

$$\alpha_{_{em}}, G_{_F}, m_{_W}, m_{_Z}, \sin^2 \theta_{_W}, m_{_H}$$

- Provide critical tests of SM (NNLO QCD and NLO EW predictions are available)
- Require precise understanding of different sources of experimental uncertainties, both experimental and theoretical

05/09/2017

A.Savin, UW

A_{FB} measurement with di-muon and ³² di-electron events CMS: EPJC C76 (2016) 325

Muon/electron candidates with $p_T > 20$ GeV, $|\eta| < 2.4$ (for electrons up to 5!)

The measured $\cos\theta_{CS}^{*}$ distribution

A_{FB} is measured as a function of dilepton mass in bins of pseudorapidity

A_{FB} measurement with di-muon and di-election events CMS: EPJC C76 (2016) 325

- Wrt 7 TeV CMS A_{FB} measurement is extended to high |y|
 closer to parton-level asymmetry ;
- Predictions describe well the measured values

Effective mixing angle at LHCb

- Di-muons in region 60-160 GeV;
- 7 TeV (1 fb⁻¹) + 8 TeV (2 fb⁻¹)

high rapidity - less dilution between parton and proton

 $\sin^2 \theta_{\rm W}^{\rm eff} = 0.23142 \pm 0.00073 \pm 0.00052 \pm 0.00056,$

Uncertainties: stat (will improve with more data); theo (will <u>os</u>/improve with PDF) -> measurement most precise at LHC.

LHCb: JHEP 1511 (2015) 190

Compatibility in context of the global fit

Comparison to other experiments

The result is compatible with the current world average and similar in precision to the currently leading measurements

Fitted distributions, consistency test³⁷

Consistency test on Z events shows expected performance of the mass measurement procedure

Effective mixing angle results

 $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23101 \pm 0.00036(\text{stat}) \pm 0.00018(\text{syst}) \pm 0.00016(\text{theory}) \pm 0.00030(\text{pdf}) \\ \sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23101 \pm 0.00052.$

Statistical uncertainty still dominate, followed by PDF, that was reduced by reweighting by 50%. Experimental uncertainties are relatively small, theoretical are dominated by QCD/scales

05/09/2017

CMS: CMP-PAS-FTR-17-001

