

ttH and tH at ATLAS and CMS: Status, Prospects, and Questions

Workshop on the physics of HL-LHC and perspectives at HE-LHC, 30 Oct - 1 Nov 2017 (CERN)

Matthias Schröder on behalf of the ATLAS and CMS Collaborations | October 31, 2017

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

processes

Higgs-boson Yukawa coupling λ_t to

top quark especially interesting • Large (\approx 1): important in loop

- Strong impacts on SM and BSM physics
- Indirect constraints from gluon-fusion production and H $\rightarrow \gamma \gamma$ -decays
 - Dominate current value
 - Model-dependent: need to make assumptions on loop contributions

tt- and t-associated H production: direct access to top-Higgs coupling

Measuring the Top-Higgs Yukawa Coupling

ATLAS and CMS LHC Run 1

Outline

- Not very many dedicated projections on ttH and tH available yet
- This presentation:
- 1) Review of current measurements (personal selection)
 - What methods are used and what precision is reached?
 - Which uncertainties dominate?

2) Prospects for higher luminosities

- Projections of direct $t\bar{t}H(\gamma\gamma)$, $t\bar{t}H(\mu\mu)$, and $H \rightarrow ZZ^* \rightarrow 4/$ measurements
- Projections of the indirect coupling measurements

3) Thoughts on further studies

- What additional studies are needed?
- What theoretical input is needed?

ttH and tH Production at the LHC

- Small ttH production cross-section of $\approx 0.5 \, \text{pb}$ at 13 TeV
 - Large dependence on \sqrt{s} compared to other channels, e.g. factor \approx 4 increase from 8 TeV
 - Uncertainty dominated by missing higher orders (QCD scales)
- Yet smaller tH production cross-section of \approx 0.1 pb
- Combination of tt/t and H decays:
 6 7 8 9 10
 multitude of possible final states with many objects
 - Jets and b jets
 - Light leptons and hadronic \(\tau\)s
 - Photons

Searches for ttH Production at the LHC

			Latest LHC Run-II results on $\mu = \sigma / \sigma_{SM}$					
				ATLAS	(ATLAS-CONF)		CMS	(CMS-PAS)
purity			$t\bar{t}H(ZZ^* \to 4{\it I})$	< 7.7	(2017-043)	<	1.2	(HIG-16-041)
	q		$t\bar{t}H(\gamma\gamma)$	$0.5\substack{+0.6 \\ -0.6}$	(2017-045)		$2.2^{+0.9}_{-0.8}$	(HIG-16-040)
	yie		tīH(multi-leptons)	1.6 ^{+0.5} _{-0.4} (2017-077)			1.5 ^{+0.5} _{-0.5} (<i>I</i>)	(HIG-17-004)
							$0.7^{+0.6}_{-0.5}~(au_{ m h})$	(HIG-17-003)
		↓	tīH(bb)	$0.8\substack{+0.6\\-0.6}$	(2017-076)	-	$0.2^{+0.8}_{-0.8}$	(HIG-16-038)
			combination	$1.2^{+0.3}_{-0.3}$	(2017-077)			

In general: similar analysis strategies and sensitivity by ATLAS & CMS

tīH, H $\rightarrow \gamma \gamma$ & 4/

- $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4/$ cleanest channels: high purity
 - tt and H systems of event can be cleanly separated and identified
- Challenge: small signal yield of $\sigma \times \mathcal{B} \approx 1$ fb ($\gamma\gamma$), ≈ 0.14 fb (4/)
- Several categories targeting ttH and tH production
 - $\gamma\gamma$ ATLAS: tt/t leptonic (2 ttH, 1 tH) and hadronic (4 ttH, 2 tH) channels
 - $\gamma\gamma$ CMS: tt/t leptonic (1 ttH), hadronic (1 ttH) channels
 - 4/ ATLAS+CMS: incl. ttH category

I from sidebands VBF WH ZH ggZH

ATLAS Simulation Preliminary $H \rightarrow \gamma \gamma$, $m_{H} = 125.09$ GeV

ttH, H $\rightarrow \gamma \gamma$ & 4/: Results

- H $\rightarrow \gamma \gamma$ channel: precision of $\Delta \mu = 0.6$ –0.9
 - Results compatible with SM expectation
 - Entirely dominated by statistical uncertainty
 - Systematic uncertainties dominated by signal modelling
- $H \rightarrow ZZ^* \rightarrow 4I$: no events observed, only upper limits

tt H, H ightarrow multi-leptons

- Targeting $H \rightarrow WW^*, ZZ^*, \tau \tau$ and \geq 1 leptonically decaying t quark
 - Event selection: $I^{\pm}I^{\pm}$ or \geq 3*I*, jets, and b tags
 - Several categories to enhance different channels
 - Excl. H \rightarrow 4/, CMS: excl. τ_{had} (dedicated analyses)
- Main backgrounds (composition depends strongly on category)
 - Irreducible $t\bar{t} + V$ production: from theory with $\mathcal{O}(10\%)$ uncertainty
 - Fake and non-prompt leptons, lepton charge mis-ID: estimated from data with $\mathcal{O}(30\%)$ uncertainty

tt H, H \rightarrow multi-leptons: Results

- ATLAS and CMS: sensitivity enhanced using MVA methods
 - e.g. 2/SS: two BDTs to separate tt V vs. tt and tt V vs. tt + V

- H ightarrow multi-leptons channel: similar precision of $\Delta \mu = 0.5$
 - Results compatible with SM expectation
 - Statistical and systematic uncertainty at same size
 - Dominating: signal & tt + V modelling (theory), non-prompt /, JEC

tītH, H ightarrow bb

• Largest H branching ratio: $\sigma \times B \approx 0.3 \, \text{pb}$

- Challenging final state
 - Huge combinatorics in event reconstruction
 - Large tt + bb background
 \$\mathcal{O}\$(10)pb with associated large theory uncertainties

single-lepton-channel candidate event

tīH, H ightarrow bb: Strategy

Selection of semi- and dileptonic tt decays

All-hadronic final state analysed at 8 TeV, e.g. ATLAS J. High Energ. Phys. (2016) 160

- Events categorised by number of jets and b-tagging information (in some cases also boosted-object category)
 CMS Preliminary + data
 - First separation of signal and $t\overline{t}+X$ backgrounds
- Final discriminants exploiting BDT and Matrix Element Method (MEM)
 - Details differ, e. g. ATLAS using a reconstruction BDT, CMS using a 2D discriminant from BDT and MEM

Simultaneous fit across all categories

tī́H, H \rightarrow bb̄: Background Modelling

- tt + HF: Powheg+Pythia8, normalised to NNLO+NNLL prediction
- Approach by ATLAS

 - Normalisation of tt + ≥ 1b/c freely floating in final fit
 - Add. uncertainties include choice of generator, PDF, QCD scales, ISR/FSR
- Approach by CMS
 - Separate templates for $t\bar{t} + b$, $t\bar{t} + b\bar{b}$, $t\bar{t} + 2b$, $t\bar{t} + c\bar{c}$, $t\bar{t} + LF$
 - 50% rate uncertainty per process, uncorrelated in final fit
 - Add. uncertainties include PDF, QCD scales, ISR/FSR

tīH, H ightarrow bb: Results

• H \rightarrow bb̄ channel: precision of $\Delta \mu = 0.6$ –0.8

(results with equal luminosity: similar sensitivity of experiments)

- Results compatible with SM expectation (CMS: 1.5 σ below SM)
- Systematic uncertainties dominate (already at 13 fb⁻¹)
- Theory $t\bar{t} + HF$ modelling uncertainty dominates, other: b tagging, JEC
 - Also: limited MC sample size in background modelling

Status: ttH LHC Run-II Results

	ATLAS	(ATLAS-CONF)		CMS	(CMS-PAS)
tīH(ZZ* \rightarrow 4/)	< 7.7	(2017-043)	<	1.2	(HIG-16-041)
tīH($\gamma\gamma$)	$0.5^{+0.6}_{-0.6}$	6 (2017-045)		$2.2^{+0.9}_{-0.8}$	(HIG-16-040)
tīH(multi-leptons)	$1.6^{+0.5}$	(2017-077)		$1.5^{+0.5}_{-0.5}$ (/)	(HIG-17-004)
	0.2	4 ()		$0.7^{+0.6}{-0.5}~(au_{ m h})$) (HIG-17-003)
tīH(bb)	$0.8\substack{+0.6\\-0.6}$	6 (2017-076)	-	$-0.2^{+0.8}_{-0.8}$	(HIG-16-038)
combination	$1.2^{+0.3}_{-0.3}$	3 (2017-077)			

• With 36 fb⁻¹: evidence for ttH production

- Combination: 4.2 σ obs., 3.8 σ exp. (ATLAS)
- Multi-leptons obs.: 4.1 σ (ATLAS), 3.3 σ (CMS)

Very different uncertainties depending on channel

- Strongly statistics limited channels
- Channels with large & theoretically difficult backgrounds

\rightarrow different strategies to gain from higher luminosities

tH Production at the LHC

- t-channel and tW-channel production contribute (s channel negligible)
 - Dominating contributions depend on κ_t and κ_V

- Interference: $A \propto (\kappa_V \kappa_t) \rightarrow \sigma \propto \kappa_V^2 + \kappa_t^2 2\kappa_V \kappa_t$
- Destructive interference in SM ightarrow small cross section of pprox 90 fb
 - But strong dependence on κ_t (also sign!)

tH production sensitive to magnitude and sign of top-Yukawa coupling

Searches for tH Production

- Dedicated tH searches in $\mathbf{H}
 ightarrow \mathbf{b}\bar{\mathbf{b}}$ and $\mathbf{H}
 ightarrow$ leptons final states
 - Similar strategies and uncertainties as for ttH
- E.g. CMS upper limits (obs.) on tH cross-section in H \rightarrow bb channel
 - SM: 113.7 $\times \sigma_{SM}$
 - $\kappa_t = -1:6.0 \times \sigma_{\text{ITC}}$
 - Not excluded by coupling measurements if BSM contributions allowed in loops
 - Statistical uncertainties dominate
 - Systematics: JEC, QCD scales
- Also: both tH and ttH contributions considered in H $ightarrow \gamma\gamma$

(ATLAS-CONF-2017-045, CMS-PAS-HIG-16-040)

Prospects at 300 and 3000 fb⁻¹

Indirect Constraints

 Projected sensitivity of combined coupling measurement assuming a SM Higgs-boson

Relative uncertainty on λ_t of 14 % (300 fb⁻¹) and 8.2 % (3000 fb⁻¹)

• Uncertainty on μ (Run-II with 36 fb⁻¹: $\mu = 0.5 \pm 0.6$)

ATLAS (14 TeV)	0.38 (all unc.)	0.36 (no theory unc.)
CMS (13 TeV)	0.30 ($pprox$ Run-II unc.)	0.27 ($\frac{1}{2}$ theory, $\frac{1}{\sqrt{L}}$ exp. unc.)

@300 fb⁻¹: ttH($\gamma\gamma$) entirely dominated by statistical uncertainty

ATLAS (14 TeV)	0.38 (all unc.)	0.36 (no theory unc.)
CMS (13 TeV)	0.30 ($pprox$ Run-II unc.)	0.27 ($\frac{1}{2}$ theory, $\frac{1}{\sqrt{L}}$ exp. unc.)

@300 fb⁻¹: ttH($\gamma\gamma$) entirely dominated by statistical uncertainty

• Uncertainty on μ (Run-II with 36 fb⁻¹: $\mu = 0.5 \pm 0.6$)

@3000 fb⁻¹: theory uncertainties play a role

$t\bar{t}H(\mu\mu)$

• Uncertainty on μ (ATLAS)

300 fb ⁻¹	0.74 (all unc.)	0.72 (no theory unc.)
3000 fb ⁻¹	0.27 (all unc.)	0.23 (no theory unc.)

Some sensitivity (30% level) @3000 fb⁻¹, dominated by stat. uncertainty

• Uncertainty on μ (CMS)

$300\mathrm{fb}^{-1}$	0.81 ($pprox$ Run-II unc.)	0.81 ($\frac{1}{2}$ theory, $\frac{1}{\sqrt{I}}$ exp. unc.)
$3000\mathrm{fb}^{-1}$	0.32 (HL-LHC unc.)	0.31 ($\frac{1}{2}$ theory, $\frac{\sqrt{1}}{\sqrt{L}}$ exp. unc.)

Entirely dominated by statistical uncertainty even at @3000 fb⁻¹

Thoughts on Further Studies

What to Study?

Dedicated projections for other ttH channels and for tH production: what to expect with more data? (personal list of questions)

- Implications on scope of measurements?
 - Ultimate precision of inclusive ttH cross-section measurements in different channels and combination
 - Prospects for differential ttH measurements
 - Prospects for dedicated tH cross-section measurements
- Implications on systematic uncertainties?
 - Impact of reduced statistical component in systematic uncertainties, in particular: b-tagging, non-prompt / contributions, JEC
 - Do additional theory modelling uncertainties become important?
- Implications on experimental techniques and constraints?
 - Limitations by trigger constraints?
 - Limitations by realistic size of MC samples?
 - Gain by boosted-object reconstruction?

Example: b-Tagging

- Similar b-tagging performance expected between ATLAS and CMS
 - Dependence on PU scenario
- Expect any change in b-tagging performance to significantly impact ttH(bb) measurement
 - Impact in other channels?
- Can uncertainties be reduced by larger control-sample size?

Theory Uncertainties

- ttH(bb), ttH(multi-leptons): background modelled using simulation
- Modelling uncertainties (among) dominant: direct impact on ultimate precision
 - Single largest impact: $t\bar{t} + b\bar{b}$ cross-section uncertainty limits $t\bar{t}H(b\bar{b})$
 - $t\bar{t} + V$ cross-section uncertainty impacts $t\bar{t}H(multi-leptons)$
- Prospects for improvements?
 - What can be expected from control regions and dedicated separate measurements?
- Related: practical aspects of MC sample size
 - Can $t\bar{t} + X$ phase-space be efficiently enhanced?
 - In particular relevant for MVA-based methods: require additional training samples
 - Can systematic variations be incorporated via event weights?

Summary & Conclusions

ttH and tH production: direct access to top-Higgs Yukawa coupling

- Challenging final states with many objects and different uncertainties
- Status: evidence for ttH production
- The hunt is still at the beginning: rich and exciting programme ahead
- Increase in luminosity will directly help in some channels
 - Precision channels $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4/! \lesssim 10\%$ feasible $(\gamma \gamma)$ (to some extent $H \rightarrow$ multi-leptons)
 - Other channels: improvement of experimental uncertainties?
- Most required inputs from theory side
 - Reduction of $t\bar{t} + b\bar{b}$ uncertainty? (dominating uncertainty $H \rightarrow b\bar{b}$)
 - Reduction of tt + V uncertainty?
- Further dedicated projections for tH and ttH analyses required to better understand gain and limitations