Top Quark Properties at HL/HE-LHC

Frédéric Déliot
CEA-Saclay

Workshop on the physics of HL-LHC and perspectives at HE-LHC, November 1st, 2017

thanks for the inputs from M. Cristinziani, M. Mangano, M. Vos
top quark statistics

- top quark samples

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>13 TeV - 30 fb⁻¹</th>
<th>13/14 TeV - 3000 fb⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t\bar{t})</td>
<td>30 Mevts</td>
<td>3 Gevts</td>
</tr>
<tr>
<td>(t\bar{t}) (fiducial)</td>
<td>1.55 Mevts</td>
<td>155 Mevts</td>
</tr>
<tr>
<td>(t\bar{t}) with (M_{\ell\ell} > 1 \text{ TeV}) (fiducial)</td>
<td>30 kevts</td>
<td>3 Mevts</td>
</tr>
<tr>
<td>(t\bar{t}) with (M_{\ell\ell} > 2 \text{ TeV}) (fiducial)</td>
<td>480 evts</td>
<td>48 kevts</td>
</tr>
<tr>
<td>(t)-channel</td>
<td>6 Mevts</td>
<td>600 Mevts</td>
</tr>
<tr>
<td>(Wt)-channel</td>
<td>2 Mevts</td>
<td>200 Mevts</td>
</tr>
<tr>
<td>(s)-channel</td>
<td>300 kevts</td>
<td>30 Mevts</td>
</tr>
<tr>
<td>(ttV)</td>
<td>30 kevts</td>
<td>3 Mevts</td>
</tr>
<tr>
<td>(tZ)</td>
<td>3 kevts</td>
<td>300 kevts</td>
</tr>
<tr>
<td>(tH)</td>
<td>300 evts</td>
<td>30 kevts</td>
</tr>
</tbody>
</table>

- top quark properties: search from deviation from SM predictions
 - top couplings
 - asymmetries
 - rare process, FCNC
top-gluon coupling

- chromo-electric and magnetic dipole moments:
 - dim-6 operator: effective modification of the top-gluon coupling (dV, dA)
 \[
 \mathcal{L}_{tg} = -g_s \bar{t} \gamma^\mu \frac{\lambda_a}{2} t G^a_{\mu
u} + \frac{g_s}{m_t} \bar{t} \gamma^\mu (dV + i d_A \gamma_5) \frac{\lambda_a}{2} t G^a_{\mu
u}
 \]
 - constrain coming from the $t\bar{t}$ inclusive cross section

- enhance sensitivity by using production at high invariant mass
 - using central events $|\eta| < 2$
 - events are boosted: top tagging (12.5% efficiency, 0.03% mistag)
 - background from mistagging of top (dijet)

- expect large gain due to the statistics in the boosted regime

<table>
<thead>
<tr>
<th>Invariant mass selection</th>
<th>$\sigma_{t\bar{t}}$</th>
<th>σ_{jj}</th>
<th>$\sqrt{S + B}/S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{t\bar{t}}$ (or m_{jj}) > 1 TeV</td>
<td>1.0 pb</td>
<td>0.89 pb</td>
<td>0.004</td>
</tr>
<tr>
<td>$m_{t\bar{t}}$ (or m_{jj}) > 2 TeV</td>
<td>16 fb</td>
<td>40 fb</td>
<td>0.047</td>
</tr>
</tbody>
</table>

normalized to 100 fb$^{-1}$
top-Z coupling

- top-Z weak magnetic and electric dipole moments:
 \[\mathcal{L}_{ttZ} = e \bar{u}(p_1) \left(\gamma^\mu (C_{1,V}^Z + \gamma_5 C_{1,A}^Z) + \frac{i\gamma^\mu q_\nu}{M_Z} (C_{2,V}^Z + i\gamma_5 C_{2,A}^Z) \right) v(p_2) Z^\mu \]
 - \(C_{2,V}^Z \approx 10^{-4} \) at NLO, \(C_{2,A}^Z \): only at NNLO

- selection of \(ttZ \) events
 - 3 leptons
 - 4 jets, 2 b-tag

- limit settings using 2 observables with the highest sensitivity
 - \(\Delta\Phi_{ll} \) for \(C_{1}^Z \) and \(p_t Z \) for \(C_{2}^Z \)
top-Z coupling sensitivity

- Including NLO corrections improves the constraints by 20-40%
- Constraints down to 0.08
- Can go further by using $t\bar{t}Z/t\bar{t}$ ratio (and $t\bar{t}y/t\bar{t}$) to constrain 3 electroweak dipole moments (arXiv: 1603.08911)

• anomalous form factors:

\[\Gamma_{\mu V}(k^2, q, \bar{q}) = -ie \left\{ \gamma_\mu \left(F_{1V}(k^2) + \gamma_5 F_{2V}(k^2) \right) + \frac{q_{\mu \nu}}{2m_t} (q + \bar{q})^\nu \left(i F_{2V}(k^2) + \gamma_5 F_{2A}(k^2) \right) \right\} \]

• selection of tty events
- 1 lepton, 4 jets, 2 b-tag
- 1 well separated photon
- main background from fake photon

• results
- constraints on the vector/axial couplings \(F_{V1} \) to 2-3%, \(F_{V2} \) to 10%

<table>
<thead>
<tr>
<th>coupling</th>
<th>30 fb(^{-1})</th>
<th>300 fb(^{-1})</th>
<th>3000 fb(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta F_{V1}^\gamma)</td>
<td>+0.23</td>
<td>+0.079</td>
<td>+0.037</td>
</tr>
<tr>
<td>(\Delta F_{V1}^A)</td>
<td>-0.14</td>
<td>-0.045</td>
<td>-0.019</td>
</tr>
<tr>
<td>(\Delta F_{V2}^\gamma)</td>
<td>+0.17</td>
<td>+0.051</td>
<td>+0.018</td>
</tr>
<tr>
<td>(\Delta F_{V2}^A)</td>
<td>-0.52</td>
<td>-0.077</td>
<td>-0.024</td>
</tr>
<tr>
<td>(\Delta F_{A2}^\gamma)</td>
<td>+0.34</td>
<td>+0.19</td>
<td>+0.12</td>
</tr>
<tr>
<td>(\Delta F_{A2}^A)</td>
<td>-0.35</td>
<td>-0.20</td>
<td>-0.12</td>
</tr>
<tr>
<td>(\Delta F_{A2}^\gamma)</td>
<td>+0.35</td>
<td>+0.19</td>
<td>+0.11</td>
</tr>
<tr>
<td>(\Delta F_{A2}^A)</td>
<td>-0.36</td>
<td>-0.24</td>
<td>-0.18</td>
</tr>
</tbody>
</table>

t\bar{t} charge asymmetry

charge asymmetry small in the SM:
- \(\sim 1\% \), can be enhanced by looking at boosted channel

<table>
<thead>
<tr>
<th>14 TeV</th>
<th>QCD: (A_{\text{C/PLD}}) (%)</th>
<th>0.5 TeV</th>
<th>1 TeV</th>
<th>2 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A_{\text{C/PLD}}) (%)</td>
<td>0.58 (3)</td>
<td>0.74 (3)</td>
<td>1.11 (5)</td>
</tr>
<tr>
<td></td>
<td>(A_{\text{C/PLD}}) (%)</td>
<td>0.07 (4)</td>
<td>0.86 (5)</td>
<td>1.32 (8)</td>
</tr>
</tbody>
</table>

W. Bernreuther et al., arXiv:1205.6580

sensitivity studies:
- for different assumptions on the scaling of the systematic uncertainties
- observation of SM asymmetry might be possible, need to improve modeling

alternatives:
- Can also use the other asymmetries (energy or inclined asymmetry) based on t\bar{t}+jet: could be observed with 16\(\sigma \) with 3000 fb\(^{-1}\) (Berge & Westhoff, arXiv:1307.6225)
- LHCb can also measure a forward asymmetry. Might be sensitive to complementary new physics models
ttW asymmetry

- **ttW production**
 - like for tt: symmetric at LO, asymmetry at NLO
 - but can only occur from q̅q annihilation (no gg contribution until NNLO): larger asymmetry than for tt
 - W emission: polarizer for quark/antiquark ⇒ polarised top/antitop production (asymmetric rapidity distribution at LO)

- **asymmetry**
 - top based
 - b or lepton based

- **variation with beam energy**
 - decrease slower than the tt asymmetry

- **ttW asymmetry**
 - larger than tt asymmetry but need statistics
 - sensitive to chirality of NP

<table>
<thead>
<tr>
<th>8 TeV</th>
<th>13 TeV</th>
<th>14 TeV</th>
<th>33 TeV</th>
<th>100 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma (\text{pb}))</td>
<td>(198^{+15}_{-14})</td>
<td>(661^{+15}_{-13})</td>
<td>(786^{+14}_{-13})</td>
<td>(4630^{+12}_{-11})</td>
</tr>
<tr>
<td>(A_T^c (%))</td>
<td>(0.72^{+0.14}_{-0.09})</td>
<td>(0.45^{+0.09}_{-0.06})</td>
<td>(0.43^{+0.08}_{-0.06})</td>
<td>(0.26^{+0.04}_{-0.05})</td>
</tr>
<tr>
<td>(\sigma (\text{fb}))</td>
<td>(210^{+11}_{-11})</td>
<td>(587^{+13}_{-12})</td>
<td>(678^{+14}_{-13})</td>
<td>(3220^{+17}_{-18})</td>
</tr>
<tr>
<td>(A_T^b (%))</td>
<td>(2.37^{+0.56}_{-0.38})</td>
<td>(2.24^{+0.43}_{-0.32})</td>
<td>(2.23^{+0.43}_{-0.33})</td>
<td>(1.95^{+0.28}_{-0.23})</td>
</tr>
<tr>
<td>(A_T^l (%))</td>
<td>(8.50^{+0.18}_{-0.10})</td>
<td>(7.54^{+0.19}_{-0.17})</td>
<td>(7.59^{+0.24}_{-0.22})</td>
<td>(5.37^{+0.22}_{-0.30})</td>
</tr>
<tr>
<td>(A_T^g (%))</td>
<td>(-14.83^{+0.65}_{-0.95})</td>
<td>(-13.16^{+0.81}_{-1.12})</td>
<td>(-12.84^{+0.81}_{-1.11})</td>
<td>(-9.21^{+0.87}_{-1.05})</td>
</tr>
</tbody>
</table>

Frédéric Déliot, HL-LHC kickoff, 1-NOV-17
Top Flavour Changing Neutral Current

- ‘golden’ physics case for HL-LHC top physics
 - Forbidden at tree level in the SM, appearing only in loops but highly suppressed
 - Heavily rely on data statistics

% SM 2HDM(FV) 2HDM(FC) MSSM RPV RS
\[t \rightarrow Zu \] \[7 \times 10^{-17} \] - \[\leq 10^{-7} \] \[\leq 10^{-6} \] -
\[t \rightarrow Zc \] \[1 \times 10^{-14} \] \[\leq 10^{-6} \] \[\leq 10^{-10} \] \[\leq 10^{-7} \] \[\leq 10^{-6} \] \[\leq 10^{-5} \]
\[t \rightarrow gu \] \[4 \times 10^{-14} \] - - \[\leq 10^{-7} \] \[\leq 10^{-6} \] -
\[t \rightarrow gc \] \[5 \times 10^{-12} \] \[\leq 10^{-4} \] \[\leq 10^{-8} \] \[\leq 10^{-7} \] \[\leq 10^{-6} \] \[\leq 10^{-5} \]
\[t \rightarrow \gamma u \] \[4 \times 10^{-16} \] - - \[\leq 10^{-8} \] \[\leq 10^{-9} \] -
\[t \rightarrow \gamma c \] \[5 \times 10^{-14} \] \[\leq 10^{-7} \] \[\leq 10^{-9} \] \[\leq 10^{-8} \] \[\leq 10^{-9} \] \[\leq 10^{-9} \]
\[t \rightarrow hu \] \[2 \times 10^{-17} \] \[\leq 10^{-5} \] \[\leq 10^{-6} \] \[\leq 10^{-5} \] \[\leq 10^{-9} \] \[\leq 10^{-9} \]
\[t \rightarrow he \] \[3 \times 10^{-15} \] \[2 \times 10^{-3} \] \[\leq 10^{-5} \] \[\leq 10^{-5} \] \[\leq 10^{-9} \] \[\leq 10^{-4} \]

Snowmass, arXiv:13011.2028

- HL-LHC experimental studies
 - \(t \rightarrow Zq, t \rightarrow Hq, t \rightarrow qy \)
ATLAS t → Zq Sensitivity

- t → Zq FCNC parametrized with 4 independent couplings:

\[L_{tZu} = - \frac{g}{2c_w} \bar{t} \gamma^\mu \left(X_L P_L + X_R P_R \right) t Z_{\mu} - \frac{g}{2c_w} \frac{i \sigma^{\mu\nu} (p_t^* - p_u^*)}{M_Z} \left(k_L P_L + k_R P_R \right) t Z_{\mu} + h.c. \]

- event selection
 - using the detector with the full |\eta|<4 coverage
 - 3 leptons, 2 opposite signed around the Z mass
 - at least 2 jets: 1 b-tag, 1 non b-tag
 - kinematic reconstruction via a \(\chi^2 \)

\[\chi^2 = \frac{(m_Z - m_{\text{reco}})^2}{\sigma_Z^2} + \frac{(m_W - m_{\text{reco}})^2}{\sigma_W^2} + \frac{(m_t - m_{\text{reco}})^2}{\sigma_{t \rightarrow Wb}^2} + \frac{(m_t - m_{\text{reco}})^2}{\sigma_{t \rightarrow Zq}^2} \]

reference scenario, unit normalisation

ATL-PHYS-PUB-2016-019
t → Zq Sensitivity Results

ATLAS limit extraction:
- maximum likelihood fit of the χ^2 distribution

ATLAS stat only limits

<table>
<thead>
<tr>
<th>γ^* $t\to Z \nu$</th>
<th>σ^* $t\to Z \nu$</th>
<th>γ^* $t\to Z \ell$</th>
<th>σ^* $t\to Z \ell$</th>
<th>γ^* $t\to Z \nu + Z \ell$</th>
<th>σ^* $t\to Z \nu + Z \ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4.3 \cdot 10^{-5}$</td>
<td>$4.3 \cdot 10^{-5}$</td>
<td>$5.6 \cdot 10^{-5}$</td>
<td>$5.8 \cdot 10^{-5}$</td>
<td>$2.4 \cdot 10^{-5}$</td>
<td>$2.5 \cdot 10^{-5}$</td>
</tr>
</tbody>
</table>

ATLAS limit with systematics:
- Set A: 5-6 times worse limit than stat only
 - based on 8 TeV result
- Set B: 3-4 times worse limit than stat only
 - 50% improvements in the uncertainty on the data driven fake estimation
 - 10% uncertainty on the tZ/tW cross sections, 6% on the ttV cross section

CMS projection:
- pileup: 140
- based on the 8 TeV result
- cut and count approach
- systematic uncertainty assumption
 - signal: 20%
 - background: scaling with luminosity
 (limit to at most a factor of 4 better)

<table>
<thead>
<tr>
<th>$\mathcal{B}(t \to Zq)$</th>
<th>19.5 fb$^{-1}$ @ 8 TeV</th>
<th>300 fb$^{-1}$ @ 14 TeV</th>
<th>3000 fb$^{-1}$ @ 14 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. bkg. yield</td>
<td>3.2</td>
<td>26.8</td>
<td>268</td>
</tr>
<tr>
<td>Expected limit</td>
<td>< 0.10%</td>
<td>< 0.027%</td>
<td>< 0.010%</td>
</tr>
<tr>
<td>1σ range</td>
<td>0.05 – 0.13%</td>
<td>0.018 – 0.038%</td>
<td>0.007 – 0.034%</td>
</tr>
<tr>
<td>2σ range</td>
<td>0.05 – 0.20%</td>
<td>0.013 – 0.051%</td>
<td>0.008 – 0.020%</td>
</tr>
</tbody>
</table>

Frédéric Déliot, HL-LHC kickoff, 1-NOV-17
ATLAS t → Hq Sensitivity

- **t → Zq FCNC parametrized with 2 (scalar, pseudo-scalar) couplings:**
 \[\mathcal{L}_{\text{H}u} = -\frac{1}{\sqrt{2}} \bar{u} \left(\eta_L^R P_L + \eta_R^R P_R \right) t H + h.c. \]

- **event selection**
 - 1 lepton, at least 3 jets, 1 or 2 b-jets

- **main background**
 - t̅t+jets/soft

- **analysis strategy**
 - discriminant variable built from pdf calculated for every permutations in each signal category taking into account the reconstruction probability
 \[p^{\text{Sig}} = M'(b_1, \ell, E_T^{\text{miss}}) \cdot M^H(b_2, b_3) \cdot M'(b_2, b_3, j) \cdot p_T(j) \]

Frédéric Déliot, HL-LHC kickoff, 1-NOV-17
ATLAS $t \rightarrow Hq$ Sensitivity Results

- **Limit extraction:**
 - maximum likelihood fit of the discriminant

- **stat only limits**

 \[
 \begin{array}{c|c|c|c}
 t \rightarrow Hu & t \rightarrow Hc & t \rightarrow Hu+Hc \\
 \hline
 1.2 \cdot 10^{-4} & 1.0 \cdot 10^{-4} & 0.55 \cdot 10^{-4}
 \end{array}
 \]

- **Limit with systematics:**
 - Set A: 2 times worse limit than stat only
 - based on 8 TeV result
 - Set B: 2 times worse limit than stat only
 - 2% uncertainty on the b-tagging efficiency
 - 10% uncertainty in the light fake rate

 \[
 \begin{array}{c|c|c|c}
 \text{Set} & t \rightarrow Hu & t \rightarrow Hc & t \rightarrow Hu+Hc \\
 \hline
 A & 2.4 \cdot 10^{-4} & 2.0 \cdot 10^{-4} & 1.1 \cdot 10^{-4} \\
 B & 2.4 \cdot 10^{-4} & 2.0 \cdot 10^{-4} & 1.1 \cdot 10^{-4}
 \end{array}
 \]

reduced impact of the systematic uncertainties due to profiling
strongly constrain expected with large HL-LHC control region dataset
CMS $t \rightarrow q\gamma$ Sensitivity

- **channels**
 - both single top with photon and $t\bar{t}$ with one FCNC $t \rightarrow q\gamma$ decay

- **selection**
 - 1 muon, 1 b-tag jet, 1 photon separated from the muon and the jet
 - top kinematic reconstruction using muon, b-jet, MET 4-momenta
 - not fully exploits eta coverage yet

- **main background**
 - fake photon (% taken from the 8 TeV analysis)
 - tV+jets, triboson

- **analysis strategy**
 - counting method

Frédéric Déliot, HL-LHC kickoff, 1-NOV-17
CMS $t \rightarrow q\gamma$ Sensitivity Results

- **systematic uncertainties in the 8 TeV analysis**
 - $t\nu\gamma / t\gamma$: 11.5 / 11 % (theory uncertainties: 4.1 % / 2.8 %)

- **extrapolation of systematics**
 - scenario 1: same as at 8 TeV
 - scenario 2:
 - theory uncertainty reduced by 50%
 - experimental uncertainties: 1% uncertainty on b-tagging, 2% on c/light misidentification, 1% on lepton/JES, 1.5% luminosity uncertainty

- **upper limits**

<table>
<thead>
<tr>
<th>Scenario</th>
<th>$B(t \rightarrow u\gamma)$</th>
<th>$B(t \rightarrow c\gamma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7 fb⁻¹ at 8 TeV</td>
<td>1.7×10^{-4}</td>
<td>2.2×10^{-3}</td>
</tr>
<tr>
<td>3 ab⁻¹ at 14 TeV (Scenario 1)</td>
<td>4.6×10^{-5}</td>
<td>3.4×10^{-4}</td>
</tr>
<tr>
<td>3 ab⁻¹ at 14 TeV (Scenario 2)</td>
<td>2.7×10^{-5}</td>
<td>2.0×10^{-4}</td>
</tr>
</tbody>
</table>

CMS PAS FTR-16-006
FCNC Sensitivity Summary
4 tops

- very sensitive to New Physics
 - New resonances, e.g. color-octet/singlet vectors/scalars
 - Top compositeness
 - EFT
 - 4t operator is not constrained elsewhere

- Higgs width
 - Off-shell Higgs also contributes significantly to 4 tops

 \[
 \sigma_{SM}^{(tt\bar{t}t)}_{g+Z/\gamma} : \begin{array}{c}
 8 \text{ TeV} \\
 14 \text{ TeV}
 \end{array}
 \begin{array}{c}
 1.193 \text{ fb} \\
 12.390 \text{ fb}
 \end{array}
 \]

 \[
 \sigma_{SM}^{(tt\bar{t}t)}_{H} : \begin{array}{c}
 0.166 \text{ fb} \\
 1.477 \text{ fb}
 \end{array}
 \]

 \[
 \sigma_{SM}^{(tt\bar{t}t)}_{\text{incl}} : \begin{array}{c}
 -0.229 \text{ fb} \\
 -2.060 \text{ fb}
 \end{array}
 \]

- Experimental search:
 - SM NLO prediction: ~ 9 fb @ 13 TeV
 - current significance (30 fb^{-1}): ~ 1 sigma
 - not sure we can reach 5 sigma before HL-LHC
 - SM NLO prediction: ~ 104 fb @ 27 TeV
Other properties

- **measurements of Vts and Vtd**
 - using ratio of top decays with different b-tagging requirement and rapidity of the t-channel single top production (arXiv:1002.4718)
 - limited by systematics: overall precision down to 0.05?

- **Wtb coupling**
 - testing the anomalous tensor-like coupling using single top s-channel production at large momentum transfer (arXiv:1512.04807)
 - $|g_{A,V}| < 0.10$ with 3000 fb$^{-1}$ using $\sigma(m_{tb} > 2\text{TeV})$
Conclusion

• Top FCNC is the ‘obvious’ search that will benefit from the HL-LHC statistics
 - experimental projection done

• Studies of top couplings will also gain from statistics
 - important gain expected in constraining EFT operators

• We can go beyond that
 - asymmetries
 - other properties in the boosted regime?

• Need to develop the HE-LHC physics case for the top sector
 - 4 tops
 -