

Based on: 1708.09395 (V. Gligorov, S. Knapen, M. Papucci, & DR)

LLPs are generic!

Higgs(and other) portals provide rich arena for LLP phenomenology

Gauge mediation

(mini-)split SUSY

stealth SUSY

Asym. Dark Matter

Freeze-in

Composite Dark Matter

Baryogenesis Neutrino masses Flavor puzzle Neutral Naturalness

Hidden Valleys

- LLP lifetimes as long as $\tau \lesssim 1\,{\rm s}$ are broadly consistent with BBN
- Masses can plausibly range from sub-MeV to $\mathcal{O}(100 \text{ GeV})$.

Dean Robinson dean.robinson@uc.edu

CODEX-b

LHC coverage

- ATLAS/CMS will set best limits for charged, colored and/or heavy LLPs
- LHCb: probes $\mathcal{O}(\text{GeV})$ neutral LLPs with significant muon BR and $c\tau \sim \text{VELO}$ scale: can trigger on softer μ 's and softer DVs.
- In some cases, ATLAS, CMS, LHCb coverage is already complementary
- (see Monica D'Onofrio's talk)

- Large BGs in hadronic collisions: lighter, neutral, longer-lived LLPs are hard for them to see!
- (see David Curtin's talk for discussion of proposals and physics cases)

LHCb Cavern

LHCb Cavern

Pre-Run 3 (2020): Data AcQuistion will be moved to surface

(more details in Giovanni Passaleva's talk)

General strategy: Look for decays-in-flight of LLPs from IP8

Dean Robinson dean.robinson@uc.edu

Instrumentation

As a proof-of-concept:

- Fiducial volume ('the box') is $10 \times 10 \times 10$ m; angular acceptance 1%.
- 6 (RPC) tracking layers on all faces
- 5 sets of 3 vertical tracking layers equally spaced in box
- 1cm strip granularity

Capabilities and possibilities

- Distance is only \sim 4 bunch crossing times for relativistic objects: Integrate CODEX-b into the DAQ & readout, and treat as subdetector
 - $\circ~$ Identification and at least partial reconstruction of the LLP event.
 - $\circ\,$ E.g. tag a VBF jet for Higgs decays, or an associated $K^{(*)}$ for B decays.
- Modest size of the fiducial volume: Consider more ambitious detection technologies such as calorimetry or time-of-flight
- Precision timing and spatial resolution, 100 ps or futuristic 50 ps resolution possible
 - $\circ~$ Required for LLP mass reconstruction

Backgrounds

Modest amount of additional shielding is needed for CODEX-b

• Primary and secondary sources: muons, kaons, neutrinos, and neutrons

- Conceptual study:
 - $\circ~(20+5)\lambda$ passive Pb shield attenuates muon & neutral hadron BGs
 - $\circ~$ A thin veto layer rejects secondary production within the shield.
- To estimate BGs we use a (preliminary) Geant4 simulation.
- BGs are controlled in this proof-of-concept with active veto eff $\sim 10^{-5}$

Data-driven BG calibration

- Cosmics will be used for spatial & time detector alignment. (Signal is from horizontally displaced source, not vertical!)
- Backgrounds can be measured by putting a small telescope in the LHCb cavern
 - $\circ~$ Measure background rates with different shield thicknesses
 - Is being considered for an engineering run well ahead of full detector construction. Looks promising to do very soon!

Benchmark Scenarios

Consider two benchmark (Higgs-based) LLP scenarios

- Spin-1 massive gauge boson $\gamma_{\rm d}$
 - $\circ~$ produced by Higgs decays $h \to \gamma_{\rm d} \gamma_{\rm d}$
 - $\circ~\gamma_{\rm d}$ decays via kinetic mixing with SM hypercharge
- light $\mathcal{O}(\mathsf{GeV})$ scalar arphi
 - \circ produced in inclusive *B* decays $b \rightarrow s \varphi$ via Higgs mixing portal
 - $\circ \ \varphi$ decay through same Higgs portal
- Coming soon: $h \rightarrow$ dark glueballs, twin Higgs mixing portal
 - $\circ~$ Suggestions for other portals/signatures welcome!

b ightarrow s arphi: Higgs-scalar mixing

Single parameter portal: Higgs-scalar mixing angle, θ , controls production rate and lifetime

- Large theory uncertainties for $m_{arphi}\gtrsim 1\,{
 m GeV}!$ (cf. Evans 1708.08503)
- Blue dashed includes tracking sim; dot-dashed for $\mathcal{L}=1/ab$

- Large theory uncertainties for $m_{\varphi} \gtrsim 1 \text{ GeV}!$ (cf. Evans 1708.08503)
- Blue dashed includes tracking sim; dot-dashed for $\mathcal{L}=1/ab$

General $b \rightarrow s \varphi$ Reach

Relax constraint between lifetime and inclusive BR

• Max efficiency at $c\tau \sim 10\,{\rm m}$: parent *B*'s and daughter φ 's only mildly boosted.

$h \rightarrow \gamma_{\rm d} \gamma_{\rm d}$: Higgs-Dark photon portal

- For $m_{\varphi} = 0.5$ GeV, ATLAS reach is sys limited: Assume factor of 5 improvement. (Could scale as much as \sqrt{L})
- $h \rightarrow$ inv reach anticipated to be \sim few%

Tracking Efficiencies

Implement a tracking simulation for above geometry:

- Six hits required for a track
- Assume sensitivity down to 600 MeV momentum

	$c\tau$ (m)	m_{φ}	$[B \rightarrow \lambda]$	$X_s \varphi$]		$m_{\gamma_{ m d}}$	$[h \rightarrow \gamma]$	$\left[d \gamma_{\rm d} \right]$		Dominated by opening
		0.5	1.0	2.0	0.5	1.2	5.0	10.0	20.0	angle resolution. Requires
	0.05	-	-	-	0.39	0.48	0.50	_	_	optimization using station spacing and granularity
	0.1	-	-	-	0.48	0.63	0.73	0.14	-	
Dominated by assumption	1.0	0.71	0.74	0.83	0.59	0.75	0.82	0.84	0.86	
> 600 MeV. Needs proper	5.0	0.55	0.64	0.75	0.60	0.76	0.83	0.86	0.88	
	10.0	0.0 0.49 0.58 0.74	0.74	0.59	0.75	0.84	0.86	0.88		
	50.0	0.38	0.48	0.74	0.57	0.75	0.82	0.87	0.88	
	100.0	0.39	0.45	0.73	0.62	0.77	0.83	0.87	0.89	
	500.0	0.33	0.40	0.75	-	-	-	-	_	

 Lesson: Proof-of-concept tracking effs are O(1). Can be further optimized.

Boost and Mass Reco

Mild resolution even for $b \rightarrow s\varphi!$

For $b \rightarrow s\varphi$, use time-of-flight to reconstruct LLP mass. Assume 100 ps and 50 ps resolution per hit. LLPs slow enough for mild mass reconstruction!

Thoughts & Next Steps

No showstoppers so far. CODEX-b can significantly enhance the NP reach and capabilities of the LLP programme, complementing or exceeding the reach of other LHC experiments, with largely decorrelated backgrounds

Higgs portals in particular are a 'target rich' environment. Can we leverage possible special capabilities of CODEX-b?

Lots to do:

- Develop a more realistic proposal for the detector, including BG shield analysis and tracking setup/other technologies, and achievable resolution for reconstruction
- Develop the NP physics case for other models

Thank you!

Extras and Details

levels lating many tole inna mala man note is and

Why do we care about LLPs?

Long lived particles are generic consequence of theories with:

- Small couplings
- Scale (or loop) hierarchies
- Phase space suppression

SM provides a template in weak decays:

Multiple scales (*G_F*)

Approx symmetries (e.g. isospin)

3-body final states

LHCb (projected) reaches

Generically not excluded: Applies for light inflaton (Bezrukov and Gorbunov 1303.4395)

θ² [rad²] Theory HCb 95% C 10-5 ∕∕∕ B⁺→K⁺γ 10-6 10 Theory 10-6 Cosmological constraints 2×10⁻¹ 2 m, [GeV/c²] LHCb: 1612.07818 10 LHCb µµ 10 10 10 HCb µµ pre-module

Orsay, U7F

0.05 0.1

10-10

10-11

0.005 0.01 0.02

Reach in $c\tau$ is limited by size of VELO/TT distance and/or statistics

Two example portals:

Higgs mixing portal:

 $B \to K^{(*)}(\varphi \to \mu\mu)$

Dark photon portal:

 $D^* \rightarrow DA'$

HCb µµ post-module

LHCb on accume 15 th

Some LLP Proposals

MilliQan: 1607.04669

CODEX-b physics reach will be most directly comparable to MATHUSLA. The LLP detection strategies and technologies necessarily have various commonalities, though the backgrounds and configuration will differ in several critical aspects

LLP Reach Intuition

Number of LLP decay vertices

Fiducial efficiency:

Other Capabilities and Possibilities

- If DELPHI is removed, fiducial volume doubles!
- Precision timing and spatial resolution, 100 ps or futuristic 50 ps resolution possible
 - $\circ~$ Multi-track signatures could be very compelling signals of NP
 - $\circ~$ Can fully reconstruct events even with one light invisible state: semileptonic $\varphi \to f \ell \nu~$ or $\varphi \to \varphi' f f$
- Empty space ('muon shadow') between IP8 and UXA shield might also be exploited if BR(LLP $\rightarrow \mu\mu$) ~ 1 .

Primary Backgrounds

• Primary muons may scatter on air. Attenuated with extra shielding, and remainder vetoable by front tracking faces

• Primary neutral hadrons suppressed with additional shielding

(In practice Pb is not ideal for neutrons: other materials to be considered)

 ν-air inclusive inelastic σ: ~ O(3) events, but actual fake rate likely much smaller.

Dean Robinson dean.robinson@uc.edu

Secondary Backgrounds

 Muon or neutron secondary production in shield can be large! Vetoable – 'reducible' – by active veto in shield

 Active veto placed so that active veto eff/rejection rate is minimized, while neutral 'irreducible' BGs are suppressed

Geant4 $(20 + 5)\lambda$ simulation

To estimate BGs we use a (preliminary) Geant4 simulation. Includes muons, kaons, pions, neutrinos, neutrons, gammas, protons,....

	Partic				
BG species	irreducible by shield veto	reducible by shield veto	Baseline Cuts		
$n + \overline{n}$	7	$5\cdot 10^4$	$E_{\rm kin} > 1{\rm GeV}$		
K_L^0	0.2	870	$E_{\rm kin} > 0.5~{ m GeV}$		
$\pi^\pm + {\cal K}^\pm$	0.5	$3\cdot 10^4$	$E_{\rm kin} > 0.5~{ m GeV}$		
$\nu + \overline{\nu}$	0.5	$2\cdot 10^6$	E > 0.5 GeV		

These are yields not scattering rates! <code>n-air</code> scattering prob. $\sim 5\%$

Normalization is set for min bias $\sigma \sim 100 \ {\rm mb}$

Muon-air interactions can be vetoed using front detector faces

Shield veto event rejection rate $\sim 10^{-4}$

No use (yet) of timing or spatial information

Estimates validated with simplified propagation model using muon CSDA and kaon scattering length, and scattering/muoproduction cross-sections, from data

$b ightarrow s \varphi$

Single parameter portal: Higgs-scalar mixing angle, θ

• Inclusive $b \rightarrow s\varphi$ branching ratio

$${
m Br}[B o X_sarphi]\simeq 6.~s_ heta^2(1-m_arphi^2/m_b^2)^2$$

- φ width also set by s_{θ}^2 , from data-driven estimate (Fradette and Pospelov 1706.01920). Somewhat large theory uncertainties for $m_{\varphi} \gtrsim 1 \text{ GeV}!$ (cf. Evans 1708.08503)
- B distribution generated with Pythia8 hardQCD; inclusive decays modelled by $B \to K \varphi$ exclusive
- $b\overline{b}$ production cross-section $\sim 500\,\mu {
 m b}$

$h ightarrow \gamma_{\rm d} \gamma_{\rm d}$

Higgs-Dark photon portal:

 $yhF'_{\mu\nu}F'_{\mu\nu} + \epsilon F'_{\mu\nu}B_{\mu\nu}$

- $Br[h \rightarrow \gamma_d \gamma_d]$ and γ_d lifetime controlled by separate parameters
- $\gamma_{\rm d}$ branching ratios fixed by e^+e^- data
- GF Higgs production, simulated with Pythia8
- Daughter muons can be quite hard, can use muon shadow if ${\rm Br}[\gamma_{\rm d}\to\mu\mu]$ is significant

Boost Resolution

• Reconstruct parent boost from the measured decay vertex (no timing!), assuming 2-body decay with relativistic products (only need spatial info!)

- The resolution is < 1% dominated by distance to first measured point, not detector granularity
- Boost distribution is dominated by the spread of boosts, not resolution.