

Co-funded by the Horizon 2020 Framework Programme of the European Union

SM Higgs prospects in ATLAS and CMS

G. Ortona (LLR) for the CMS and ATLAS collaborations

Outline

Introduction

Golden channels and coupling to bosons • $H \rightarrow ZZ, H \rightarrow \gamma \gamma, H \rightarrow WW$

Yukawa couplings bottom taus muoi

bottom, taus, muons

The big picture

 Overview of couplings and signal strengths for production and decay mode

Summary and conclusions

Where are we?

The existence of (at least one) Higgs boson well established No deviations from SM so far

A few exceptions aside, we are not yet at the level of precision we need to probe small deviations from the SM and narrow down NP. For precision Higgs coupling we need HL/HE-LHC

Giacomo Ortona

Strategy

CMS extrapolation scenarios:

- S1: Systematic uncertainties constant, unchanged detector performances
- S2: Theoretical uncertainties scaled by 0.5, experimental uncertainties scaled by luminosity (until a floor)
- •S1/S2+: Includes higher PU and detector upgrades effects

ATLAS extrapolation scenarios:

- Includes programmed detector upgrades, with extended η coverage of the tracker up to lηl<4.0 ("reference" scenario)
- •PU and upgrades taken into account for projections
- •Theoretical uncertainties scaled by 1, 0.5 or 0

Golden channels: ZZ

Main contributor to the H mass measurement at LHC-Run2 Upgraded detectors bring significant improvements:

• Increased CMS/ATLAS tracker $^{1.4}_{1.2}$ acceptances up to Inl<4, new EM trigger, $^{1.4}_{1.2}$ improved μ triggers, higher reco efficiency $^{0.6}_{0.6}$ and momentum resolution in Phase2 $^{0.4}_{0.4}$ Strong sensitivity to ggH, and good (but $^{0.2}_{0.4}$

CMS-TDR-17-001

CMS-TDR-17-003

ATL-PHYS-PUB-2016-008

CMS-FTR-16-002 ATL-PHYS-PUB-2014-016

ZZ: signal strengths

ATLAS Simulation Preliminary

 Expected uncertainties below 15% (5% for gluon fusion) with 3 ab⁻¹ for the signal strengths measurement

0.6

0.8

3000 fb⁻¹ (13 TeV)

ECFA16 S2+

ZZ: Differential distributions

acceptance

CMS-FTR-16-002

- Statistical uncertainties are still dominating at high p_T even at 3 ab⁻¹ (4-9%)
- Improved signal modelling needed before 300 fb⁻¹
- Some sensitivity to the shape at low (high) $p_{T:}$ gives sensitivity to k_b , k_c (k_t)

Important to extend coverage (bins, range, variables) in the future

CMS-FTR-16-002 ATL-PHYS-PUB-2013-013

Anomalous ZZ couplings

$$A(\text{HVV}) \sim \left| a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right| m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

O(1%) precision on anomalous HVV couplings at HL-LHC

Different notations in CMS and ATLAS. Both probe tensor-structure and the CP violation in the $H \rightarrow VV$ coupling:

 f_{a3} = fraction of CP violation; f_{g3} (f_{g4}) = fraction of CP-even(odd) contributions

Significant improvement when including production-level information (HIG-17-011)

Giacomo Ortona

CMS-TDR-17-002 ATL-PHYS-PUB-2016-026

Golden channels: γγ

- Resolution mostly driven by photon energy and vertexing resolutions
- For the projections assumed reduced photon ID, vertex efficiency

CMS-FTR-16-002

γγ: cross section

CMS-FTR-16-002 ATL-PHYS-PUB-2014-016

$\gamma\gamma$: couplings

experiments Precision higher than 5-10%

Giacomo Ortona

0.2

0.3

Expected uncertainty

0.4

0.5

 $\mu_{ttH}^{\gamma\gamma}$

0

0.1

-0.1

(VBF)H→WW

Even in worst case scenario we should be able to observe $H\rightarrow$ WW production

Scoping scenario	Δ_{μ}			Significance (σ)			
Signal unc.	Full	1/2	None	Full	1/2	None	
Reference	0.20	0.16	0.14	5.7	7.1	8.0	
Middle	0.25	0.21	0.20	4.4	5.2	5.4	
Low	0.39	0.32	0.30	2.7	3.3	3.5	

ATL-PHYS-PUB-2014-011 Yukawa couplings: bottom

Projections from Run1 legacy from ATLAS: from 3.9σ (300fb⁻¹) to 8.8 σ (300fb⁻¹). 15% uncertainty on the signal strength

With current statistics, first evidence for (V)H \rightarrow bb from CMS (3.3 σ , arXiv: 1709.07497) and ATLAS (3.5 σ , arXiv:1708.03299)

5-10% uncertainty from CMS projections from Run1

 $ggH \rightarrow bb$ could probe high p_T region, can be within reach

Yukawa couplings: taus

Giacomo Ortona

CMS-FTR-16-002

CMS-TDR-17-002

ATL-PHYS-PUB-2013-007

140

Giacomo Ortona

Higgs to invisible

 Tight constraints could be set on NP and Higgs properties from H→invisible branching fraction (constrained to the ~10% level)

CMS-FTR-16-002 ATL-PHYS-PUB-2014-016

The big picture: µ

17 / 20

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int \text{Ldt} = 300 \text{ fb}^{-1}; \int \text{Ldt} = 3000 \text{ fb}^{-1}$

CMS-FTR-16-002 ATL-PHYS-PUB-2014-016 The big picture: couplings

CMS Projection

 Expected sensitivity on coupling modifiers ≤5% in all channels for 3 ab-1

CMS-FTR-16-002 ATL-PHYS-PUB-2014-016

Summary of results

CMS Preliminary [S1,S2]

 $0 \quad 0.05 \quad 0.1 \quad 0.15 \quad 0.2 \quad 0.25$

$L (fb^{-1})$	κ_{γ}	κ_W	κ _Z	κ _g	κ _b	κ _t	κ_{τ}	$\kappa_{Z\gamma}$	$\kappa_{\mu\mu}$	BR _{SM}
300	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7,10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]

Giacomo Ortona

HL/HE-LHC Workshop - CERN - 01/11/2017

Summary & Conclusions

Projections and studies were performed by the ATLAS and CMS collaborations from Run1/2 extrapolations or parametrised simulation

Potential to reach the percentage level in precision on the Higgs coupling modifiers and signal strengths

Covering most of the Higgs production and decay channels

Latest projections confirm previous assumptions (Snowmass)

Recent improvement in Run2 analyses not yet propagated to HL-LHC projections

BACKUP

arXiv:1707.00541

Anomalous ZZ couplings

 $f_{\Lambda 1} \cos(\phi_{\Lambda 1})$

Yukawa couplings: top

- Top Yukawa coupling can be measured from: ttH-like categories in H->gg, H->ZZ, H->mm
 And searches for ttH
 - production, with different H decays

 tHq production can probe FCNC down to BR(t->Hq~10⁻⁴)

Yukawa couplings: charm

•ATLAS H->j/psi

Giacomo Ortona

• Very difficult to see it even at HL-LHC

ZZ: Higgs off-shell

- •(Explain assumptions, RB*, mu->width etc.)
- If off-shell and on-shell couplings are the same, it is possible to translate the off-shell production in a measurement on the width
- With 3 ab⁻¹: 30-50% uncertainty: $\Gamma_{H}^{(L2)} = 4.2^{+1.5}_{-2.1}$ MeV (stat+sys).