THE WIDE WORLD OF CP VIOLATION AT HL-LHC AND HE-LHC

Felix Yu
Johannes Gutenberg University, Mainz

Workshop on the physics of HL-LHC and perspectives at HE-LHC, CERN – November 1, 2017
CP Violation – Motivated and Required

We think, ergo CP violation

R. Descartes (?)

- Sakharov’s three conditions for baryogenesis motivate searches for new sources of CP violation
 - Need B violation
 - Need C and CP violation
 - Need interactions to happen out of thermal equilibrium

- Our picture of baryogenesis is embarrassingly incomplete
 - SM EW baryogenesis is insufficient
 - Strongly motivates new sources of CPV

CP Violation – Motivated and Required

• Many CP puzzles remain outstanding
 – Leading SM CPV comes from CKM phase
 – Θ-parameter of QCD constrained to be $< 10^{-10}$
 – Possible Dirac and Majorana phases of PMNS matrix are next targets of neutrino experiments

• SM predicts no tree-level CPV in Higgs couplings
 – Attractive possibility to use first-order electroweak phase transition + CP violation in Higgs couplings to generate the baryon asymmetry

See, e.g. Konstandin [1302.6713]
CP and the Higgs

• Higgs couplings can naturally have CP phases: distinct UV origins
 – scalar-pseudoscalar admixture
 • e.g. scalar potential has imaginary phase in 2HDM bilinear
 • readily (naïvely) tested via rate suppression
Higgs couplings can naturally have CP phases: distinct UV origins

- scalar-pseudoscalar admixture
- couplings to gauge bosons (e.g. bosonic CPV)

\[\mathcal{L} = \frac{m_Z^2}{v} h Z_\mu Z^\mu + c_{ZZ} \frac{h}{\Lambda} Z_{\mu\nu} Z^{\mu\nu} + c_{Z\tilde{Z}} \frac{h}{\tilde{\Lambda}} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \]

- Many results and constraints
- For example, tested via acoplanarity measurement in \(h \to ZZ^* \to 4l \) (see talk by Y. Chen next)
CP and the Higgs

• Higgs couplings can naturally have CP phases: distinct UV origins
 – scalar-pseudoscalar admixture
 – couplings to gauge bosons (e.g. bosonic CPV)
 – couplings to fermions (e.g. fermionic CPV)

\[\mathcal{L} = -m_f \bar{f} f - \frac{y_f}{\sqrt{2}} h \bar{f} (\cos \Delta + i\gamma_5 \sin \Delta) f \]

• \(\Delta = 0 \) is predicted in the SM (purely CP-even)
• \(\Delta = \pi/2 \) is pure CP-odd (and CP conserving)
• \(\Delta = \pm \pi/4 \) is maximally CP-violating
Yukawa CP phases

\[\mathcal{L} = - \left(\alpha_{ij} + \beta_{ij} \frac{H^\dagger H}{\Lambda^2} \right) H \bar{f}^i f^j \]

– In dim-6 SMEFT, can readily generate BSM Yukawa couplings including
 • Enhanced/suppressed diagonal flavor couplings
 • New off-diagonal flavor-violating couplings
 • CP phases in diagonal or off-diagonal couplings
– \(\alpha \) and \(\beta \) are generally complex matrices – must have flavor symmetry in UV physics to ensure they are aligned

• In EW broken phase, one combination gives known fermion masses, other generally leads to complex Yukawa matrices

Felix Yu – CPV at HL-LHC, HE-LHC
Yukawa CP phases

– Curious fact: Suppressing Yukawa CP phases in SMEFT requires parametrically (chirally) large scale separation

\[
\mathcal{L} \supset y_u \bar{Q}_L \tilde{H} u_R + y_u' \frac{H^\dagger H}{\Lambda^2} \bar{Q} \tilde{H} u_R + y_\ell \bar{L} H \ell_R + y_\ell' \frac{H^\dagger H}{\Lambda^2} \bar{L} H \ell_R \\
+ y_d \bar{Q}_L H d_R + y_d' \frac{H^\dagger H}{\Lambda^2} \bar{Q} H d_R + \text{h.c.}
\]

– Flavor symmetries diagonalize and remove phases in mass matrices

\[
m_f = \frac{y_f v}{\sqrt{2}} + \frac{y_f' v^3}{2\sqrt{2} \Lambda^2}
\]

– Yukawa phases can be chirally enhanced for light fermions

\[
\frac{y_f, \text{ eff}}{\sqrt{2}} = \frac{y_f v}{\sqrt{2}} + \frac{3y_f' v^2}{2 \sqrt{2} \Lambda^2} = \frac{m_f}{v} + \frac{2y_f' v^2}{2 \sqrt{2} \Lambda^2}
\]

• (Bluntly, fine-tune mass generation ↔ large BSM effects)
Complementarity with EDMs

• Top CPV phase naively constrained by electron EDM
 Brod, Haisch, Zupan [1310.1385]
 • Indirect probe, still important to perform direct tests at LHC
 See Buckley, Goncalves [1507.07926],
 Mileo, Kies, Szynkman, Crane, Gegner [1603.03632],
 cf. F. Maltoni slides from yesterday

• Light quark CPV phases confront neutron EDM
 Chien, Cirigliano, Dekens, de Vries, Mereghetti [1510.00725]

• Open room for τ Yukawa phase – HL-LHC and HE-LHC could provide leading sensitivity
 Harnik, Martin, Okui, Primulando, FY [1308.1094]
 Berge, Bernreuther, Kirchner [1510.03850]
CP phase in Tau Yukawa

\[\mathcal{L} = -m_\tau \bar{\tau} \tau - \frac{y_\tau}{\sqrt{2}} h \bar{\tau} (\cos \Delta + i \gamma_5 \sin \Delta) \tau \]

- eEDM probes currently leave Δ unconstrained
CP phase in Tau Yukawa

\[\mathcal{L} = -m_\tau \bar{\tau} \tau - \frac{y_\tau}{\sqrt{2}} h \bar{\tau} (\cos \Delta + i \gamma_5 \sin \Delta) \tau \]

- eEDM probes currently leave \(\Delta \) unconstrained

Signal strengths only constrain the quadrature sum

Must use differential distributions to test CP

Felix Yu – CPV at HL-LHC, HE-LHC

Brod, Haisch, Zupan [1310.1385]
Basic CPV collider phenomenology

• NP CPV sources generally affect inclusive rates
 – Normalized differential distributions fold out rate information (by construction)
 – Need statistics (=inclusive distributions=integrated luminosity) before asymmetry variables or differential distributions are meaningful

• Canonical observables
 – triple product of 3-vectors – CP-odd, T-odd combination
 • $p_1 \cdot (p_2 \times p_3)$
 – angular distributions – uses decays of polarized intermediate particles
 • acoplanarity in $h \rightarrow ZZ^* \rightarrow 4$ leptons
Review: Angular observables

- X decays to $V_1 V_2$, decays to 4 fermions
- Characterize by five angles, two masses (+X mass if unknown)

$$
\cos \theta_{p_1} = -\hat{p}_{p_1} \cdot \hat{p}_{V_2}
$$
$$
\cos \theta_{p_3} = -\hat{p}_{p_3} \cdot \hat{p}_{V_1}
$$
$$
\cos \theta^* = \hat{p}_{V_1} \cdot \hat{z}_{\text{beam}}
$$
$$
\Phi_{V_1} = \frac{\hat{p}_{V_1} \cdot (\hat{n}_1 \times \hat{n}_{sc})}{|\hat{p}_{V_1} \cdot (\hat{n}_1 \times \hat{n}_{sc})|} \arccos(\hat{n}_1 \cdot \hat{n}_{sc})
$$
$$
\Phi = \frac{\hat{p}_{V_1} \cdot (\hat{n}_1 \times \hat{n}_2)}{|\hat{p}_{V_1} \cdot (\hat{n}_1 \times \hat{n}_2)|} \arccos(-\hat{n}_1 \cdot \hat{n}_2)
$$
Extracting the phase in Higgs decays to taus

• Tau Yukawa CPV is imprinted on the tau polarizations relative to each other
 – Tau polarizations then get imprinted on the ν and ρ, ρ polarization is imparted to the πs

• Simplest observable (appropriate for LHC) is $\rho^+\rho^-$ acoplanarity angle
 • [New, better observable (appropriate for e^+e^- collider) is Θ]

$$
\begin{align*}
 h &\rightarrow \tau^- \tau^+ \\
 &\rightarrow \rho^- \nu_\tau \rho^+ \bar{\nu}_\tau \\
 &\rightarrow \pi^- \pi^0 \nu_\tau \pi^+ \pi^0 \bar{\nu}_\tau
\end{align*}
$$

Felix Yu – CPV at HL-LHC, HE-LHC
Ideal situation

Θ is an optimal reconstructable angular variable sensitive to CPV in $h \rightarrow \tau \tau$

Note MC Z background is flat

Felix Yu – CPV at HL-LHC, HE-LHC
LHC prospects

• Consider h+j events ("boosted" $\tau_{\text{had}}\tau_{\text{had}}$ sample)

• At the LHC, need to approximate neutrino momenta
 – Have (8-2-2-2=) 2 unknown four-momentum components
 – Will use collinear approximation for neutrino momenta
 • In this approximation, Θ is identical to $\rho\rho$ acoplanarity angle
 • Other approximations considered tended to wash out or distort the sinusoidal shape of the Θ distribution
 – First proposal to measure Δ at the LHC with prompt tau decays and kinematics
Collinear amplitude is about 25% of the truth Θ amplitude.
LHC14 simulation details

- Use MadGraph5 for h+j and Z+j events at LHC14
 - Mimic cuts for 1-jet, hadronic taus Higgs search category
 - Impose preselection of $p_T(j) > 140$ GeV, $|\eta(j)| < 2.5$
 - Normalize to MCFM NLO $\sigma(h+j)=2.0$ pb, $\sigma(Z+j)=420$ pb
 - No pileup or detector simulation, aside from tau-tagging efficiencies
 - Pileup degrades primary vertex determination for charged pion tracks and adds ECAL deposits that reduce neutral pion resolution
 - Tracking and detector resolution will clearly smear the Θ distribution
Yields for 3 ab$^{-1}$ LHC

- **Signal region:**
 \[\text{MET} > 40 \text{ GeV}, \ p_T(\rho) > 45 \text{ GeV}, \ |\eta(\rho)| < 2.1, \ m_{\text{coll}} > 120 \text{ GeV} \]

- Inject an additional 10% contribution to (flat) Zj background to account for QCD multijets

<table>
<thead>
<tr>
<th></th>
<th>$h\ j$</th>
<th>$Z\ j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive σ</td>
<td>2.0 pb</td>
<td>420 pb</td>
</tr>
<tr>
<td>$\text{Br}(\tau^+\tau^- \text{ decay})$</td>
<td>6.1%</td>
<td>3.4%</td>
</tr>
<tr>
<td>$\text{Br}(\tau^- \rightarrow \pi^-\pi^0\nu)$</td>
<td>26%</td>
<td>26%</td>
</tr>
<tr>
<td>Cut efficiency</td>
<td>18%</td>
<td>0.24%</td>
</tr>
<tr>
<td>N_{events}</td>
<td>1100</td>
<td>1800</td>
</tr>
</tbody>
</table>

N_{events} for 3 ab$^{-1}$ with τ-tagging 50% efficiency
Yields for 3 ab\(^{-1}\) LHC

- Consider \(\tau\) tagging efficiency benchmarks of 50\% and 70\%, use likelihood analysis testing different \(\Delta\)

<table>
<thead>
<tr>
<th>(\tau_t) efficiency</th>
<th>50%</th>
<th>70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(\sigma)</td>
<td>(L = 550 \text{ fb}^{-1})</td>
<td>(L = 300 \text{ fb}^{-1})</td>
</tr>
<tr>
<td>5(\sigma)</td>
<td>(L = 1500 \text{ fb}^{-1})</td>
<td>(L = 700 \text{ fb}^{-1})</td>
</tr>
<tr>
<td>Accuracy ((L = 3 \text{ ab}^{-1}))</td>
<td>11.5(^\circ)</td>
<td>8.0(^\circ)</td>
</tr>
</tbody>
</table>

- Discriminating pure scalar vs. pure pseudoscalar at 3\(\sigma\) requires 550 (300) \(\text{fb}\^{-1}\) with 50\% (70\%) \(\tau\) tagging efficiency
 - For 5\(\sigma\), require 1500 (700) \(\text{fb}\^{-1}\) with 50\% (70\%) \(\tau\) tagging efficiency
 - Again, detector effects and pileup are neglected
Updated Delphes analysis

Askew, Jaiswal, Okui, Prosper, Sato [1501.03156]

– Collinear approx. at LHC is likely a hard limit
– Angular resolution negligibly (4%) degrades Θ distribution
– MET resolution most significantly affects contamination from irreducible Z background

Felix Yu – CPV at HL-LHC, HE-LHC
Hadronic τ Reconstruction

Single prong decay also important if impact parameter information is used

Berge, Bernreuther, Niepelt, Spiesberger [1108.0670]

Zanzi for ATLAS and CMS [1703.10259]

See also poster by M. L. Ojeda with 1-prong and 3-prong p_T dependence

Felix Yu – CPV at HL-LHC, HE-LHC

<table>
<thead>
<tr>
<th>Generated decay mode</th>
<th>ATLAS Simulation Tau Particle Flow</th>
<th>Purity Matrix Z/γ*→ττ</th>
</tr>
</thead>
<tbody>
<tr>
<td>h<sup>±</sup></td>
<td>70.4</td>
<td>0.1</td>
</tr>
<tr>
<td>h<sup>±</sup>π<sup>0</sup></td>
<td>24.5</td>
<td>0.9</td>
</tr>
<tr>
<td>h<sup>±</sup>≥2π<sup>0</sup></td>
<td>2.2</td>
<td>0.4</td>
</tr>
<tr>
<td>h<sup>±</sup>≥1π<sup>0</sup></td>
<td>0.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>

h[±]π⁰	73.5	0.4
h[±]≥2π⁰	18.4	0.1
h[±]≥1π⁰	15.7	0.4

h[±]π⁰	4.8	12.9
h[±]≥2π⁰	1.2	58.8
h[±]≥1π⁰	0.7	16.5

Note: The table above shows the purity matrix for different decay modes, with entries indicating the purity of each mode.
HE-LHC (first look)

- Higgs+jet rates will give $3.5 \times$ increase in signal statistics

<table>
<thead>
<tr>
<th>p_T cut (GeV) on h+j for</th>
<th>NLO cross section for 27 TeV pp collider (MCFM 8.0)</th>
<th>Signal enhancement compared to 14 TeV, $p_T > 140$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>12.1 pb</td>
<td>6.05×</td>
</tr>
<tr>
<td>140</td>
<td>6.96 pb</td>
<td>3.48× [Our original working point]</td>
</tr>
<tr>
<td>150</td>
<td>6.12 pb</td>
<td>3.06×</td>
</tr>
<tr>
<td>200</td>
<td>3.43 pb</td>
<td>1.72×</td>
</tr>
<tr>
<td>250</td>
<td>2.08 pb</td>
<td>1.04×</td>
</tr>
</tbody>
</table>

- Remark: Boosted Higgs studies will gain significantly by going to HE-LHC
 - Important for exotic Higgs decays with jet substructure
Many more Higgs modes to study

- **EW dibosons**
 - Probe in both decays and production, especially VBF and VH (using crossing symmetry)
 - Part of general study of differential distributions to test momentum-dependent form factors

- **ttH**
 - Dileptonic tt final state with H→bb jet substructure

- **Zγ**
 - Take advantage of interference between continuum background and signal from gluon initiated events

- **gg**
 - Use associated jets for angular analysis

- **γγ**
 - Require converted photons (detector material) and angular resolution on leptonic opening angles

- **bb, cc, etc.**
 - Can possibly overcome QCD wash-out of quark polarization

See, e.g. Anderson, et al. [1309.4819]
See, e.g. Buckley, Goncalves [1507.07926]
Farina, Grossman, Robinson [1503.06470]
Dolan, Harris, Jankowiak, Spannowsky [1406.3322]
Bishara, Grossman, Harnik, Robinson, Shu, Zupan [1312.2955]
Galanti, Giammanco, Grossman, Kats, Stamou, Zupan [1505.02771]

Felix Yu – CPV at HL-LHC, HE-LHC
Open issues

• Post-discovery: what Lagrangian CPV source is responsible in the case of a positive measurement?

• Targets for CPV sensitivity
 – Tree-level operator (Yukawa) vs. loop-induced
 – How to include rate effects

• Straw man NP models for precision Higgs physics
 – Real coefficients induce unitarity violation in scattering
 • Imply a NP scale for UV completion
 – Imaginary coefficients – any guiding principle for size of effects?
Summary

• New CP phases are motivated from general baryogenesis arguments

• Each measured Higgs coupling can be a test bed for CPV
 – No tree-level CPV expected in any Higgs coupling
 – Yukawa phases should up at dimension-4 in EW broken phase
 – $h \rightarrow \tau \tau$ is a promising first channel to study at HL-LHC and HE-LHC
 – Direct tests at colliders still strongly motivated even though EDM results are null
 – Post-(pre?-)discovery model building needed to connect directly CP phases to EW baryogenesis
TABLE III: List of f_{CP} values in HVV couplings expected to be observed with 3σ significance and the corresponding uncertainties δf_{CP} for several collider scenarios, with the exception of $V^* \to VH$ mode at pp 300 fb$^{-1}$ where the simulated measurement does not quite reach 3σ. Numerical estimates are given for the effective couplings Hgg, $H\gamma\gamma$, $HZ\gamma$, HZZ/HWW, assuming custodial Z/W symmetry and using HZZ couplings as the reference. The \checkmark mark indicates that a measurement is in principle possible but is not covered in this study.

<table>
<thead>
<tr>
<th>collider energy GeV</th>
<th>\mathcal{L} fb$^{-1}$</th>
<th>$H \to VV^*$ f_{CP} δf_{CP}</th>
<th>$V^* \to VH$ f_{CP} δf_{CP}</th>
<th>$V^V^ \to H$ f_{CP} δf_{CP}</th>
<th>$gg \to H$ f_{CP} δf_{CP}</th>
<th>$H \to Z\gamma$ $\gamma\gamma \to H$</th>
<th>$H \to \gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>14000 300</td>
<td>0.18 0.06</td>
<td>6×10^{-4} 4×10^{-4}</td>
<td>18×10^{-4} 7×10^{-4}</td>
<td>-0.50 0.16</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>pp</td>
<td>14000 3000</td>
<td>0.06 0.02</td>
<td>3.7×10^{-4} 1.2×10^{-4}</td>
<td>4.1×10^{-4} 1.3×10^{-4}</td>
<td>-0.50 0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e^+e^-</td>
<td>250 250</td>
<td>\checkmark</td>
<td>21×10^{-4} 7×10^{-4}</td>
<td>\checkmark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e^+e^-</td>
<td>350 350</td>
<td>\checkmark</td>
<td>3.4×10^{-4} 1.1×10^{-4}</td>
<td>\checkmark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e^+e^-</td>
<td>500 500</td>
<td>\checkmark</td>
<td>11×10^{-5} 4×10^{-5}</td>
<td>\checkmark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e^+e^-</td>
<td>1000 1000</td>
<td>\checkmark</td>
<td>20×10^{-6} 8×10^{-6}</td>
<td>\checkmark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>125</td>
<td>\checkmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anderson, et. al. [1309.4819]