

Higgs couplings with or without SMEFT

CERN, 01 November 2017

Workshop on the physics of HL-LHC, and perspectives at HE-LHC

Collider no-lose

Find W and Z SppS LEP Weakly vs strongly coupled EW breaking Tevatron Find top LHC Find Higgs HE LHC ? \bigcirc

No-lose for HE-LHC

Currently, there is no solid indication of a new physical scale within the reach of the next high-energy collider

I will argue however the HE LHC is sure to settle one outstanding question about electroweak symmetry

Namely, whether electroweak symmetry is realized linearly or non-linearly

Linear vs non-linear

Two mathematical formulations for theories with SM spectrum

 $SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$

Linear

$H \to LH, \qquad L \in SU(2)_L$

$$H = \left(\begin{array}{c} iG_+ \\ \frac{v+h-iG_z}{\sqrt{2}} \end{array}\right)$$

Non-linear

 $SU(3)_{c} \times U(1)_{em}$

$$U \to g_L U g_Y^{\dagger}, \qquad h \to h$$

$$U = \exp(2i\varphi^a T^a/v)$$

Practical difference consists in correlations between interactions terms with different number of Higgs bosons h predicted by linear formulation

SM EFT Approach to BSM

Basic assumptions

 Much as in SM, relativistic QFT with linearly realized SU(3)xSU(2)xU(1) local symmetry spontaneously broken by VEV of Higgs doublet field

$$H \to LH, \qquad L \in SU(2)_L$$

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \dots \\ v + h(x) + \dots \end{array} \right)$$

• SM EFT Lagrangian expanded in inverse powers of Λ . equivalently in operator dimension D

$$v \ll \Lambda \ll \Lambda_L$$

$$\mathcal{L}_{\rm SM EFT} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda_L} \mathcal{L}^{D=5} + \frac{1}{\Lambda^2} \mathcal{L}^{D=6} + \frac{1}{\Lambda_I^3} \mathcal{L}^{D=7} + \frac{1}{\Lambda^4} \mathcal{L}^{D=8} + .$$

Subleading wrt D=6 if Λ high enough

Lepton number or B-L violating, hence too small to probed at present and near-future colliders

 Generated by integrating out heavy particles with mass scale Λ
 In large class of BSM models that conserve B-L,
 D=6 operators capture leading effects of new physics on collider observables at E << Λ

Buchmuller,Wyler (1986) HFFT

for review see e.q. LHCHXSWG 1610.07922

Introduce triplet of Goldstone field φ via unitary matrix U:

Transformation of U under SU(2)LxU(1) implies electroweak symmetry acts non-linearly on φ:

Lagrangian organized in derivative expansion:

$$\mathcal{L}_{\text{HEFT}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

$$U = \exp(2i\varphi^a T^a/v)$$

$$U \to g_L U g_Y^{\dagger}, \qquad h \to h$$

 $+\frac{d^{hh}}{d^{\mu}}(\partial_{\mu}h\partial^{\mu}h)\langle D_{\nu}U^{\dagger}D^{\nu}U\rangle+\frac{e^{hh}}{d^{\mu}}(\partial_{\mu}h\partial^{\nu}h)\langle D^{\mu}U^{\dagger}D_{\nu}U\rangle+\dots$

Higgs boson is perfect singlet under electroweak symmetry!

> Arbitrary polynomial of h allowed to multiply each term in \mathcal{L}_{HEFT} !

$$\mathcal{L}_{2} = -\frac{1}{2} \langle G_{\mu\nu} G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu} W^{\mu\nu} \rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \sum_{\psi=q_{L},l_{L},u_{R},d_{R},e_{R}} \bar{\psi}i \not\!\!D\psi$$

$$+ \frac{v^{2}}{4} \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle (1 + F_{U}(h)) + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h)$$

$$- v \left[\bar{q}_{L} \left(Y_{u} + \sum_{n=1}^{\infty} Y_{u}^{(n)} \left(\frac{h}{v} \right)^{n} \right) UP_{+}q_{R} + \bar{q}_{L} \left(Y_{d} + \sum_{n=1}^{\infty} Y_{d}^{(n)} \left(\frac{h}{v} \right)^{n} \right) UP_{-}q_{R}$$

$$+ \bar{l}_{L} \left(Y_{e} + \sum_{n=1}^{\infty} Y_{e}^{(n)} \left(\frac{h}{v} \right)^{n} \right) UP_{-}l_{R} + \text{h.c.} \right]$$

$$+ a_{4} \langle V_{\mu} V_{\nu} \rangle \langle V^{\mu} V^{\nu} \rangle + a_{5} \langle V_{\mu} V^{\mu} \rangle \langle V_{\nu} V^{\nu} \rangle + \frac{e^{2}}{16\pi^{2}} c_{\gamma} \frac{h}{v} F_{\mu\nu} F^{\mu\nu} + \frac{g^{hh}}{v^{4}} (\partial_{\mu} h \partial^{\mu} h)^{2}$$

$$D_{\mu}U = \partial_{\mu}U + igW_{\mu}U - ig'B_{\mu}UT_{3}$$

$$F_U(h) = \sum_{n=1}^{\infty} f_{U,n} \left(\frac{h}{v}\right)^n, \qquad V(h) = v^4 \sum_{n=2}^{\infty} f_{V,n} \left(\frac{h}{v}\right)^n$$

Difference of fundamental scale

The correlations are hardly a smoking gun to distinguish two formalism as multi-Higgs interactions terms in Lagrangian can rarely be measured in practice. Moreover, particular HEFT couplings could be correlated by accident

 However, there is a difference in the underlying fundamental scale which, for HEFT, should lead to observable consequences when colliders probe energies E >> 4 π

Can be smoothly taken to "infinity"

HEFT 4TV Has fixed numerical value of few TeV

SMEFT vs HEFT

AA,Rattazzi, unpublished

HEFT = SMEFT + non-analytic terms

 $\mathcal{L}_{\text{HEFT}} = \frac{1}{2} f_h(h) \partial_\mu h \partial_\mu h - V(h) + \frac{v^2}{4} f_1(h) \text{Tr}[\partial_\mu U^{\dagger} \partial_\mu U] + v^2 f_2(h) \left(\text{Tr}[U^{\dagger} \partial_\mu U \sigma_3] \right)^2 + \dots$

 $U = \exp(2i\varphi^a T^a/v)$

One can always re-express non-linear Lagrangian in linear language by replacing:

After this substitution, Lagrangian has linearly realized electroweak symmetry but contains terms that are non-analytic at H=0

However, a non-analytic term is in fact an infinite series of higher-order interactions, in this suppressed merely by low scale v = 246 GeV

Example: brutal triple Higgs deformation

Given Lagrangian for Higgs boson h, one can always uplift it to manifestly SU(3)xSU(2)xU(1) invariant form replacing

> iG_+ $\underline{v+h-iG_z}$

H =

$$h \rightarrow \sqrt{2 H^{\dagger} H} - v$$

$$\begin{split} &\frac{m_h^2}{2}h^2 + \frac{m_h^2}{2v}\left(1 + \delta\lambda_3\right)h^3 + \frac{m_h^2}{8v^2}h^4 \\ &\lambda_3 = \frac{m_h^2}{2v}\delta\lambda_3 \\ &\lambda_4 = \frac{m_h^2}{2v}\delta\lambda_4 \\ &\lambda_4 = \frac{m_h^2}{2v}\delta\lambda_4 \\ &\lambda_4 = \frac{m_h^2}{2v}\delta\lambda_4 \\ &\lambda_4 = \frac{m_h^2}{2v}\delta\lambda_4$$

$$V \supset \frac{3vm_h^2}{2}\delta\lambda_3((h+v)^2 + G^2)^{1/2} + \frac{m_h^2}{2v}\delta\lambda_3((h+v)^2 + G^2)^{3/2}.$$
$$G^2 = 2G_+G_- + G_z^2.$$

Non-analytic terms lead to infinite series of n-point Goldstone and Higgs boson interactions

$$\mathcal{L} \supset \mathcal{L}_{G^2} + \mathcal{L}_{G^4} + \mathcal{L}_{G^6} + \dots$$

$$\mathcal{L}_{G^2} = -m_h^2 \left(2G_+G_- + G_z^2 \right) \left[\frac{h}{2v} + \frac{1+3\delta\lambda_3}{4} \frac{h^2}{v^2} - \frac{3\delta\lambda_3}{4} \frac{h^3}{v^3} + \dots \right]$$

$$\mathcal{L}_{G^4} = -m_h^2 \left(2G_+G_- + G_z^2 \right)^2 \left(\frac{1}{8v^2} + \frac{3\delta\lambda_3}{8} \frac{h}{v^3} - \frac{15\delta\lambda_3}{16} \frac{h^2}{v^4} + \dots \right)$$

Consequence: in deformed SM with $\delta\lambda 3 \neq 0$, VV \rightarrow n x h, VV \rightarrow VV + n x h,, lose unitarity near scale 4π v

Unitarity primer

S matrix unitarity

$$S^{\dagger}S = 1$$

symmetry factor for n-body final state

Re(al)

implies relation between forward scattering amplitude, and elastic and inelastic production cross sections

$$2 \mathrm{Im} \mathcal{M}(p_1, p_2 o p_1, p_2) = S_2 \int d\Pi_2 |\mathcal{M}_{ ext{el.}}(p_1, p_2 o k_1, k_2)|^2 + \sum S_n \int d\Pi_n |\mathcal{M}_{ ext{inel.}}(p_1, p_2 o k_1 \dots k_n)|^2$$

Initial and final 2-body state can be projected to partial waves

$$2\text{Im}\,a_l = |a_l|^2 + \sum_{n \in \text{inel.}} S_n \int d\Pi_n |\mathcal{M}(E, 0, l, m \to \{n\})|^2.$$

$$(\operatorname{Re} a_l)^2 + (\operatorname{Im} a_l - 1)^2 = R_l^2, \qquad R_l = \sqrt{1 - \sum_{n \in \operatorname{inel.}} S_n \int d\Pi_n |\mathcal{M}(E, 0, l, m \to \{n\})|^2}$$

Im(al)

This implies perturbative unitarity constraints on elastic and inelastic amplitudes

$$\left|\operatorname{Re} a_{l}\right| \leq 1$$
$$\sum_{n \in \text{inel.}} S_{n} \int d\Pi_{n} |\mathcal{M}(E, 0, l, m \to \{n\})|^{2} :$$

Multi-Higgs with HEFT-deformed Higgs cubic

Higgs potential with Goldstones

$$V \supset \frac{3vm_h^2}{2}\delta\lambda_3((h+v)^2 + G^2)^{1/2} + \frac{m_h^2}{2v}\delta\lambda_3((h+v)^2 + G^2)^{3/2}.$$
$$G^2 = 2G_+G_- + G_z^2.$$

Expanding to leading order in G²

$$V \supset \delta\lambda_3 \frac{3m_h^2 v}{2} \frac{G^2}{h+v} = \delta\lambda_3 \frac{3m_h^2}{2} G^2 \sum_{n=0}^{\infty} \left(\frac{-h}{v}\right)^n.$$

s-wave isospin-0 amplitude

$$|\mathcal{M}([GG]_{I=0}^{l=0} \to h^n)| \equiv |\mathcal{M}_n| = \frac{1}{4\sqrt{\pi}} \delta\lambda_3 \frac{3\sqrt{3}n!m_h^2}{v^n}.$$

Multi-Higgs production amplitudes are only suppressed by scale v, leading to unitarity loss at some scale above v

Multi-Higgs with HEFT-deformed Higgs cubic

Perturbative unitarity bound on non-elastic amplitude

$$\sum_{n=2}^{\infty} S_n \int d\Pi_n |\mathcal{M}_n|^2 \bigg|_{\sqrt{s}=\Lambda_*} = \sum_{n=2}^{\infty} \frac{1}{n!} V_n(\Lambda_*) |\mathcal{M}_n|^2 \sim \pi^2,$$

$$V_{L}$$

$$|\mathcal{M}([GG]_{I=0}^{l=0} \to h^n)| \equiv |\mathcal{M}_n| = \frac{1}{4\sqrt{\pi}} \delta\lambda_3 \frac{3\sqrt{3}n!m_h^2}{v^n}$$

Sum over n Higgs bosons exponentiates

$$\pi^{2} \sim \frac{27\delta\lambda_{3}^{2}m_{h}^{4}}{16\pi} \sum_{n=2}^{\infty} \frac{1}{n!} \frac{\Lambda_{*}^{2n-4}}{2(n-1)!(n-2)!(4\pi)^{2n-3}} \frac{(n!)^{2}}{v^{2n}}$$
$$= \frac{27\delta\lambda_{3}^{2}m_{h}^{4}}{128\pi^{2}v^{4}} \sum_{n=2}^{\infty} \frac{n\Lambda_{*}^{2n-4}}{(n-2)!(4\pi v)^{2n-4}} = \frac{27\delta\lambda_{3}^{2}m_{h}^{4}}{128\pi^{2}v^{4}} \left(2 + \frac{\Lambda_{*}^{2}}{(4\pi v)^{2}}\right) \exp\left(\frac{\Lambda_{*}^{2}}{(4\pi v)^{2}}\right)$$

$$\frac{\Lambda_*}{4\pi v} \sim 2\log^{1/2}\left(\frac{4\pi v}{m_h|\delta\lambda_3|^{1/2}}\right)$$

For any observable cubic Higgs deformations, new physics must enter at scale <=few*4π v to regulate multi-Higgs amplitudes! Collider no-lose

Find W and Z SppS \bigcirc LEP Weakly vs strongly coupled EW breaking \bigcirc Tevatron Find top LHC Find Higgs Linear vs non-linear EW symmetry HE LHC