Adam Fallowsli

CIrS

Hiags couplings
with or without SMEFT

CERN, 01 November 2017
Workshop on the physics of HL-LHC, and perspectives at HE-LHC




Collider no-lose

, ® SppS Find W and Z

' @ LEP Weakly vs strongly coupled EW breaking
‘ @ levatron Find top

, @ LHC  Find Higgs

| @ HE LHC ?




No-lose for HE-LHC

@ Currently, there is no solid indication of a
new physical scale within the reach of the
next high-energy collider

@ I will argue however the HE LHC is sure to
settle one outstanding question about
electroweak symmetry

@ Namely, whether electroweak symmetry is
realized linearly or non-linearly



Linear vs non-linear

Two mathematical formulations for theories with SM spectrum

Linear Non-linear
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Practical difference consists in correlations between interactions terms
with different number of Higgs bosons h predicted by linear formulation



Basic assumptions

SM EFT Approach to BSM
o Much as in SM, relativistic QFT with linearly — LH, LeSUQ2)L
realized SU(3)xSU(2)xU(1) local symmetry

spontaneously broken by VEV of Higgs doublet field

@ SM EFT Lagrangian expanded in inverse powers of

A. eauivalently in operator dimension D <K A A
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/ Subleding
Lepton number ofF B-L violating, Wr’f D=6 if A
hence too small to probed at present high enough

and near-future colliders Generated by integrating out

heavy particles with mass scale A
In large class of BSM models that conserve B-L,
D=6 operators capture leading effects of new physics
on collider observables at E << A

Buchmuller,Wyler
(1986)



for review see e.g.
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Introduce triplet of Goldstone field ¢ via unitary matrix U: [J — exp(Qig&aTa/?})

Transformation of U under SU(2)LxU(1) implies )
electroweak symmetry acts non-linearly on eo: U — gLUgy, h — h

Lagrangian organized in derivative expansion: Higgs boson is perfect singlet

under electroweak symmeitry!
Lugrr = Lo+ L4+ L+ ...

o %<WMVWMV> o iBMI/BW/ + Z QEZE¢

4
Yv=qr,lr, ur,dRr,eR

Lo = —%(GWG“’/>

,U2

4

Arbitrary polynomial of h
allowed to multiply
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Example: Higgs self-interactions
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Correlations No correlations



Difference of fundamental scale

@ The correlations are hardly a smoking gun to
distinguish two formalism as multi-Higgs interactions
terms in Lagrangian can rarely be measured in
practice. Moreover, particular HEFT couplings could be
correlated by accident

@ However, there is a difference in the underlying
fundamental scale which, for HEFT, should lead to
observable consequences when colliders probe
energies E >> 4 m

SMEFT HEFT

bat 41TV

Has fixed numerical value

Can be smoothly taken to “infinity” of Fow TeV



AA,Rattazzi,
SMEFT vs HEFT GublRhLd
HEFT = SMEFT + non-analytic terms
2
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One can always re-express non-linear Lagrangian
in linear language by replacing:

After this substitution, Lagrangian has linearly realized electroweak
symmetry but contains terms that are non-analytic at H=0

However, a non-analytic term is in fact an infinite
series of higher-order interactions, in this suppressed
merely by low scale v = 246 GeV



Example: brutal triple Higgs deformation

Given Lagrangian for Higgs boson h, one can always uplift
it to manifestly SU(3)xSU(2)xU(1) invariant form replacing
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Consequence: in deformed SM with 8130,
VV—n x h, VW—=VV + n x h, ..., lose unitarity near scale 4mv



Unitarity primer

. B symmetry factor
S matrix unitarity for n-body final state

implies relation between forward scattering amplitude,
and elastic and inelastic production cross sections

2ImM (p1,p2 — p1,p2) = Sa | dlla|Mer (p1,p2 = k1, k) + ) Su [ AL | Mine (01,92 — k1 ... k)|

Initial and final 2-body state can be projected to partial waves

2Im a; = |a)* + ZS/dH\MEOlm—){n}H 2 2, 2 _ 2, _ 1—ZS/dH|MEOlm—>{n})|

n€inel. n€inel.

This implies perturbative unitarity constraints on elastic and inelastic amplitudes
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Multi-Higgs with HEFT-deformed Higgs cubic
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Multi-Higgs production amplitudes are only suppressed by scale v,
leading to unitarity loss at some scale above v



Multi-Higgs with HEFT-deformed Higgs cubic

Perturbative unitarity bound on non-elastic amplitude
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\ For any observable cubic Higgs

A, 1/ A7t  deformations, new physics must enter
~ 2lo g2 ) ] at scale <=few*4m v

| to requlate multi-Higgs amplitudes!
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