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lous Higgs boson couplings, will be reviewed. The connection with the more common EFT based on
power counting by canonical dimension (SM + dimension-6 operators, sometimes referred to as SMEFT)
will also be discussed. We start with a phenomenologically oriented introduction, which will be followed
by a systematic formulation of the nonlinear EFT.

A central goal of the LHC after the discovery of the Higgs boson will be a more comprehensive
investigation of its properties in order to test the underlying dynamics of electroweak symmetry break-
ing. At present, the Higgs boson couplings to gauge bosons and top quarks are compatible with the SM,
but deviations of O(10%) are still possible [6]. For the couplings to other fermions, or the triple-Higgs
boson coupling, even larger effects are not excluded. Anomalous Higgs boson couplings have the po-
tential to give much larger effects than new physics in electroweak gauge interactions, which is typically
constrained to the O(1%) level by electroweak precision measurements [721].

It then appears natural to focus the attention, in a first step, on the couplings of the Higgs particle.
This goal is also well motivated by the foreseeable precision at the LHC with 300 fb�1, projected to reach
several per cent accuracy for the Higgs boson couplings to gauge bosons and heavy fermions [724].

Following this line of reasoning, one is led to consider a generalization of the SM, in which the
gauge interactions are unchanged (at leading order), but general anomalous couplings are introduced for
the physical Higgs boson. To do this in a consistent, gauge-invariant way, the scalar fields have to be
decomposed into the three Goldstone fields 'a, described by

U = exp(2i'aT a/v) (II.2.161)

where T a are the generators of SU(2) with normalization Tr[T aT b] = �ab/2, and the physical Higgs
field h. This corresponds to a decomposition of the usual Higgs doublet �i, �̃i = "ij�⇤

j , into polar
coordinates p

2(�̃,�) ⌘ (v + h)U (II.2.162)

Under electroweak gauge transformations SU(2)L ⇥ U(1)Y

U ! gLUg†
Y , h ! h (II.2.163)

such that h is invariant, and its couplings can be consistently modified.II.45

The resulting generalized Lagrangian can be written as
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(II.2.164)

where
DµU = @µU + igWµU � ig0BµUT3, (II.2.165)

II.45The generic name of “nonlinear” comes from the fact that the scalar sector of the SM has a larger symmetry SU(2)L ⇥
SU(2)R (usually called chiral EW symmetry), under which the EW Goldstone bosons 'a in (II.2.161) transform nonlinearly,
in contrast to the usual Higgs doublet field, which transforms linearly. The relevant symmetry breaking pattern in the scalar
sector is then given by SU(2)L ⇥ SU(2)R ! SU(2)L+R, where the SU(2)L+R is usually called the custodial symmetry
group.
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and P± = 1/2 ± T3. The trace of a matrix A is denoted by hAi. The left-handed doublets of quarks and
leptons are written as qL and lL, the right-handed singlets as uR, dR, eR. Generation indices are omitted.
In the Yukawa terms the right-handed quark and lepton fields are collected into qR = (uR, dR)T and
lR = (⌫R, eR)T , respectively. In general, different flavour couplings Y (n)

u,d,e can arise at every order in
the Higgs field hn, in addition to the usual Yukawa matrices Yu,d,e. The detailed assumptions underlying
(II.2.164) are summarized in points (i) – (iii) below.

The first line in (II.2.164) represents the unbroken SM and the remaining lines describe the sector
of electroweak symmetry breaking. The h-dependent functions, analytic near zero field, are
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In addition to modifying the Higgs boson couplings present in the SM, new couplings with higher powers
in the field h are introduced. All these couplings may deviate, in principle, by corrections of O(1)
from their (dimensionless) SM values. For smaller deviations, the Lagrangian in (II.2.164) continues
to describe the leading new-physics effects, as long as the anomalous couplings in the Higgs sector
dominate over other corrections from physics beyond the SM. (Those would be represented by operators
of chiral dimension 4 and higher, see the discussion of power counting below.)

While L2 in (II.2.164) is gauge invariant, it is no longer renormalizable for general Higgs boson
couplings. Renormalizability would be recovered in the SM limit where

fU,1 = 2, fU,2 = 1, fV,2 = fV,3 =
m2

h

2v2
, fV,4 =

m2
h

8v2
, Y (1)

f = Yf , (II.2.167)

and all other couplings fU,n, fV,n, Y (n)
f equal to zero. In this limit (II.2.164) is just the SM written in

somewhat unconventional variables. All S-matrix elements are of course identical to the ones obtained
with the familiar linear Lagrangian.

If the deviations of the couplings from their SM values are smaller than unity, it is useful to
parameterize them by a quantity ⇠ ⌘ v2/f2, where f > v represents a new scale (which could be
related to a new strongly interacting dynamics). In models of a composite, pseudo-Goldstone Higgs
[658, 766–775] f corresponds to the Goldstone-boson decay constant. Experimentally, values of ⇠ =
O(10%) are currently still allowed.

For general Higgs boson couplings, the Lagrangian L2, nonrenormalizable in the traditional sense,
is still renormalizable in the modern sense, order by order in a consistent expansion [776]. It therefore
continues to serve as a fully consistent effective field theory. This EFT is known as the electroweak chiral
Lagrangian including a light Higgs boson. For the case without Higgs the electroweak chiral Lagrangian
has been formulated and applied in [777–793]. The generalization to include a light Higgs boson has
been developed in [683, 785, 794–804].

Having motivated the basic structure of the electroweak chiral Lagrangian, it is useful to sum-
marize the most important assumptions that define it as a systematic EFT. These concern the particle
content below a certain mass gap, the relevant symmetries, and the power counting:
(i) SM particle content, where (transverse) gauge bosons and fermions are weakly coupled to the Higgs-

sector dynamics.
(ii) SM gauge symmetries; conservation of lepton and baryon number; conservation at lowest order of

custodial symmetry in the strong sector, CP invariance in the Higgs sector and fermion flavour.
The latter symmetries are violated at some level, but this would only affect terms at subleading
order. Generalizations may in principle be introduced if necessary.

(iii) Power counting by chiral dimensions [805–808], equivalent to a loop expansion [683], with the
simple assignment of 0 for bosons (gauge fields Xµ, Goldstones ' and Higgs h) and 1 for each
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derivative, weak coupling (e.g. gauge or Yukawa), and fermion bilinear:

[Xµ,', h]� = 0 , [@µ, g, y,  ̄]� = 1 (II.2.168)

The loop order L of a term in the Lagrangian is equivalent to its chiral dimension (or chiral order)
2L + 2.
Under these assumptions the expression in (II.2.164) follows as the most general Lagrangian built

from terms of chiral dimension 2 (corresponding to loop-order L = 0). This is the systematic basis for
the leading-order electroweak chiral Lagrangian.

Functions F (h) multiplying the Higgs or the fermion kinetic terms can be removed by field redef-
initions and are therefore omitted in (II.2.164) [653, 801].

Note that the Higgs potential V (h), being related to the light Higgs boson mass ⇠ m2
h, carries

chiral dimension 2. This is explicitly realized in models where the Higgs is a pseudo-Goldstone and its
potential is generated at one loop (proportional to two powers of weak coupling, hidden in the coefficients
fV,n) [658, 770–773].

Expressions of the form ( ̄ )2(h/v)n,  ̄�µ⌫ Xµ⌫(h/v)n, Xµ⌫Xµ⌫(h/v)n+1, n � 0, where
 is a fermion and Xµ⌫ a gauge field-strength tensor, might superficially look like terms entering the
Lagrangian at chiral dimension 2. However, they represent local interactions arising from the (weak)
coupling of  and X to the new-physics sector, according to assumption (i) above. The weak coupling
associated with  ̄ or Xµ⌫ carries chiral dimension. The operators above then acquire a chiral dimension
of at least 4, which eliminates them from the leading-order Lagrangian [683].

II.2.4.b Renormalization of the chiral Lagrangian
As the electroweak chiral Lagrangian defines a consistent quantum field theory, loop corrections can be
systematically included. For the case without Higgs field this has been discussed in detail in [809–813].
The one-loop divergent parts arising from the scalar sector have recently been also obtained in the chiral
Lagrangian including the light Higgs boson [800, 814–818].

At one-loop order, terms up to chiral dimension 4 need to be included and the Lagrangian can be
written as L = L2 + L4 + LGF + LFP, including also gauge-fixing and ghost terms. In general, the
leading-order approximation is given by the tree-level amplitudes from L2. The next-to-leading order
corrections consist of the one-loop amplitudes with vertices from L2, together with tree-level contribu-
tions to first order in L4. The latter comprise new interactions, not present in L2, and act as counterterms
for the one-loop divergences. In general, they may get contributions from heavy states with masses of
order ⇤ that are integrated out in the EFT [819–821]. This pattern is known from the chiral perturba-
tion theory of pions. It is typical for the systematics of a nonrenormalizable EFT. Explicit examples are
discussed in Section II.2.4.e.

The local operators in L4 have been discussed for the bosonic sector in [799], a subset of the
fermionic terms has been considered in [822]. A systematic presentation of the complete basis of local
operators in L4 can be found in [801]. Concentrating on the electroweak bosonic sector one has (with
2a = fU,1, b = fU,2 in (II.2.166))
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µ⌫ +
ghh

v4
(@µh@µh)2
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Table 102: Example of the renormalization structure. Running of some NLO coefficients [800, 814, 815].

�a1�a2+a3 �c�� �a1 �a2�a3 �a4 �a5

0 0 �1
6(1 � a2) �1

6(1 � a2) 1
6(1 � a2)2 1

8(b � a2)2 + 1
12(1 � a2)2

+
dhh

v2
(@µh@µh)hD⌫U

†D⌫Ui +
ehh

v2
(@µh@⌫h)hDµU †D⌫Ui + . . . (II.2.169)

where Vµ ⌘ (DµU)U † and Fµ⌫ is the photon field strength. Here only a subset of the operators in L4

has been displayed, corresponding to those needed in the discussion below. All operators that need to be
included as counterterms are manifestly custodially preserving, except for the custodial breaking from
U(1)Y . This is so because the initial theory is custodially invariant when Yukawas are neglected.

As a simple example for renormalization, consider the oblique S-parameter. The first non-vanishing
contribution to S appears at NLO. One finds that the one-loop amplitude is UV–divergent and needs to
be renormalized by means of the NLO parameter a1. In the MS scheme one obtains [787, 815, 819]

S = � 16⇡ar
1 +

(1 � a2)

12⇡

✓

5

6
+ ln

µ2

m2
h

◆

(II.2.170)

In this expression, the oblique parameter is defined with the reference value mRef
h set to the physical

Higgs boson mass [738]. Since fermionic couplings to gauge bosons receive only NLO contributions
from new physics, fermion loops do not affect this result. Their impact would be a NNLO effect..

Renormalization leads to a scale dependence of the coefficients. In general, the relation between
a given renormalized chiral parameter Cr(µ) and the corresponding bare parameter C(B) from the L4

Lagrangian (e.g. a1), together with the resulting µ-dependence, is given by

dCr

d ln µ
= � �C

16⇡2
, Cr(µ) = C(B) +

�C

32⇡2

1

✏̂
(II.2.171)

where an MS subtraction of the UV divergence has been performed. Here 1/✏̂ = µ�2✏(1/✏��E+ln 4⇡),
with D = 4 � 2✏.

The running of the L4 parameters C = a1, a2, a3, c�� [815] (relevant e.g. for �� ! wawb)
and of C = a4, a5 (contributing to ZZ and W+W� scattering [800, 814]) is shown in Table 102. It is
apparent that the S-parameter in (II.2.170) is independent of the renormalization scale µ.

II.2.4.c Connection of chiral Lagrangian to -formalism
The couplings of the leading-order Lagrangian in (II.2.164), which are non-standard in general, are
displayed in Figure 187. They parameterize the leading new-physics effects in tree-level processes.

A further consideration is needed for the application of the chiral Lagrangian to processes that
arise only at one-loop level in the SM. Important examples are h ! gg, h ! �� and h ! Z�. In
this case local terms at NLO will also become relevant, in addition to the standard loop amplitudes with
modified couplings from (II.2.164). The reason is that both contributions can lead to deviations of the
amplitude from the SM at the same order, ⇠ ⇠/16⇡2. The complete list of NLO operators has first been
worked out in [801]. The terms that are relevant here are

e2Fµ⌫F
µ⌫h, eg0Fµ⌫Z

µ⌫h, g2
shGµ⌫G

µ⌫ih (II.2.172)

On the other hand, the analogous terms g02Zµ⌫Zµ⌫h and g2W+
µ⌫W

�µ⌫h in the subleading Lagrangian
yield only subleading contributions, of O(⇠/16⇡2), to the tree-level amplitudes for h ! ZZ and h !

LHEFT = L2 + L4 + L6 + . . .
Lagrangian organized in derivative expansion:



Example: Higgs self-interactions

SMEFT HEFT

L � �c3
m2

h

2v
h3 � c4

m2
h

8v2
h4 � c5

1

v
h5 � c6

1

v2
h6 + . . .

No correlationsCorrelations



The correlations are hardly a smoking gun to 
distinguish two formalism as multi-Higgs interactions 
terms in Lagrangian can rarely be measured in 
practice. Moreover, particular HEFT couplings could be 
correlated by accident  


However, there is a difference in the underlying 
fundamental scale which, for HEFT, should lead to 
observable consequences when colliders probe 
energies E >> 4 π

Difference of fundamental scale

Λ
SMEFT

4πv
HEFT

Can be smoothly taken to “infinity” Has fixed numerical value

 of few TeV



SMEFT vs HEFT
HEFT = SMEFT + non-analytic terms

One can always re-express non-linear Lagrangian 

in linear language by replacing: 

However, a non-analytic term is in fact an infinite 
series of higher-order interactions, in this suppressed 

merely by low scale v = 246 GeV 

AA,Rattazzi, 

unpublished

After this substitution, Lagrangian has linearly realized electroweak 
symmetry but contains terms that are non-analytic at H=0

LHEFT =
1

2
fh(h)@µh@µh� V (h) +

v2

4
f1(h)Tr[@µU

†@µU ] + v2f2(h)
�
Tr[U†@µU�3]

�2
+ . . .

U !

⇣
H̃,H

⌘

p
H†H

h !
p
2H†H � v
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lous Higgs boson couplings, will be reviewed. The connection with the more common EFT based on
power counting by canonical dimension (SM + dimension-6 operators, sometimes referred to as SMEFT)
will also be discussed. We start with a phenomenologically oriented introduction, which will be followed
by a systematic formulation of the nonlinear EFT.

A central goal of the LHC after the discovery of the Higgs boson will be a more comprehensive
investigation of its properties in order to test the underlying dynamics of electroweak symmetry break-
ing. At present, the Higgs boson couplings to gauge bosons and top quarks are compatible with the SM,
but deviations of O(10%) are still possible [6]. For the couplings to other fermions, or the triple-Higgs
boson coupling, even larger effects are not excluded. Anomalous Higgs boson couplings have the po-
tential to give much larger effects than new physics in electroweak gauge interactions, which is typically
constrained to the O(1%) level by electroweak precision measurements [721].

It then appears natural to focus the attention, in a first step, on the couplings of the Higgs particle.
This goal is also well motivated by the foreseeable precision at the LHC with 300 fb�1, projected to reach
several per cent accuracy for the Higgs boson couplings to gauge bosons and heavy fermions [724].

Following this line of reasoning, one is led to consider a generalization of the SM, in which the
gauge interactions are unchanged (at leading order), but general anomalous couplings are introduced for
the physical Higgs boson. To do this in a consistent, gauge-invariant way, the scalar fields have to be
decomposed into the three Goldstone fields 'a, described by

U = exp(2i'aT a/v) (II.2.161)

where T a are the generators of SU(2) with normalization Tr[T aT b] = �ab/2, and the physical Higgs
field h. This corresponds to a decomposition of the usual Higgs doublet �i, �̃i = "ij�⇤

j , into polar
coordinates p

2(�̃,�) ⌘ (v + h)U (II.2.162)

Under electroweak gauge transformations SU(2)L ⇥ U(1)Y

U ! gLUg†
Y , h ! h (II.2.163)

such that h is invariant, and its couplings can be consistently modified.II.45

The resulting generalized Lagrangian can be written as

L2 = �1

2
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2
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4
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X
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 ̄i 6D 
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4
hDµU †DµUi (1 + FU (h)) +
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1
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Y (n)
e

✓

h

v
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!

UP�lR + h.c.

#

(II.2.164)

where
DµU = @µU + igWµU � ig0BµUT3, (II.2.165)

II.45The generic name of “nonlinear” comes from the fact that the scalar sector of the SM has a larger symmetry SU(2)L ⇥
SU(2)R (usually called chiral EW symmetry), under which the EW Goldstone bosons 'a in (II.2.161) transform nonlinearly,
in contrast to the usual Higgs doublet field, which transforms linearly. The relevant symmetry breaking pattern in the scalar
sector is then given by SU(2)L ⇥ SU(2)R ! SU(2)L+R, where the SU(2)L+R is usually called the custodial symmetry
group.



Example: brutal triple Higgs deformation

Given Lagrangian for Higgs boson h, one can always uplift 
it to manifestly SU(3)xSU(2)xU(1) invariant form replacing

Non-analytic terms lead to infinite series of n-point Goldstone and Higgs boson interactions 

Consequence: in deformed SM with δλ3≠0, 

VV→n × h,  VV→ VV + n × h, ...., lose unitarity near scale 4πv 

that we have a continuous parameter to describe the SM deformations; in particular we
can entertain the limit of ��

3

! 0 where we recover the SM. Note that ��
3

! �1 does
not correspond exactly to the Luty model, as the latter does not have the h4 coupling
at all.

The interaction terms in Eq. (4.1) can be obtained from a gauge-invariant Lagrangian
with the Higgs doublet H provided the Higgs potential contains terms non-analytic at
H†H = 0. The required form is just a tad more complicated than in the Luty model:

V = m2

H(H
†H) + �(H†H)2 + ⇤3

1

(2H†H)1/2 + ⇤
3

(2H†H)3/2. (4.2)

The dimensionful parameters ⇤
1

and ⇤
3

parametrize the non-analytic deformation of the
SM. For ⇤3

1

= 3v2⇤
3

this potential leads to the cubic and quartic Higgs boson terms2 as
in Eq. (4.1) with ��

3

= 2v⇤
3

m2

h
. Here the Higgs boson mass is related to the parameters in

the potential by m2

h = 2�v2, while demanding vanishing of the linear h term fixes one
relation between the parameters and the VEV: m2

H = ��v2�6v⇤
3

. In this construction
the Lagrangian does not contain higher-order scalar self-interactions with only the Higgs
boson. On the other hand, the Lagrangian in Eq. (4.3) describes an infinite series of
terms involving even powers of G and arbitrary powers of h:

V � 3vm2

h

2
��

3

((h+ v)2 +G2)1/2 +
m2

h

2v
��

3

((h+ v)2 +G2)3/2. (4.3)

where I defined G2 = 2G
+

G� +G2

z.

4.2 Bounds from GG ! hn

Expanding Eq. (4.3) in G2, the terms with two Goldstone boson fields are

V � ��
3

3m2

hv

2

G2

h+ v
= ��

3

3m2

h

2
G2

1X

n=0

✓�h

v

◆n

. (4.4)

(There are additional Goldstone-Higgs interaction terms up to G2h2 terms coming from
the analytic (H†H)2 term in the potential but those of course do not lead to non-
perturbative behavior and are ignored in the following).

The rest of the analysis is identical as in the Luty section above. We consider scatter-
ing amplitudes of the isospin-0 2-body Goldstone state |[GG]I=0

i ⌘ 1p
3

(|G
+

G�i+ |G�G+

i+ |GzGzi).
The inelastic amplitude for scattering this state into n Higgs bosons is given by

|M([GG]I=0

! hn)| = ��
3

3
p
3n!m2

h

vn
. (4.5)

From Eq. (2.18), the corresponding s-wave amplitude is

|M([GG]l=0

I=0

! hn)| ⌘ |Mn| = 1

4
p
⇡
��

3

3
p
3n!m2

h

vn
. (4.6)

2For ⇤3
1 6= 3v2⇤3 we also get a correction to the SM quartic Higgs couplings. The following discussion

would be almost identical, but for simplicity we set ��4 = 0 here.
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Unitarity primer

S matrix unitarity

implies relation between forward scattering amplitude, 

and elastic and inelastic production cross sections

Initial and final 2-body state can be projected to partial waves

This implies perturbative unitarity constraints on elastic and inelastic amplitudes

symmetry factor

for n-body final state

Re(al)

Im(al)

where S
2

= 1/2! if |~k
1

~k
2

i contains two identical particles, and S
2

= 1 otherwise.
The pre-factor here ensures the normalization in Eq. (2.11) given Eq. (2.9). UsingR
d⌦Y ⇤

l0m0(✓,�)Ylm(✓,�) = �ll0�mm0 we can invert Eq. (2.13):

|ps, 0, l,mi =
p
S
2

⇣
1� 4m2
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Z
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lm(✓,�)|~k1~k2i. (2.14)

Given Eq. (2.13), the 2-to-2 elastic amplitude can be expressed by the partial wave
amplitude as

M(~p
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~k
2

) =
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p
1� 4m2/s

1X

l=0
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where ✓ is the angle between ~p
1

and ~k
1

. The other way around:

al(s) =
S
2

16⇡

r
1� 4m2
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where I used
R
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�ll0 . It follows that the unit a operator
on the subspace of fixed

p
s can be written in terms of the partial wave states as
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n>2
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. . . d⇧̃n|k1 . . . knihk1 . . . kn|. (2.17)

We can also write the amplitude for a transition between a particular partial wave and
a n-particle state normalized as in Eq. (2.3):

M(
p
s, 0, l,m ! {n}) =

p
1� 4m2/s
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4
p
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d⌦Ylm(⌦)M(k
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The unitarity condition in Eq. (2.6) evaluated for the in state |E, 0, l,mi becomes:

2Im al = |al|2 +
X

n2inel.

Sn

Z
d⇧n|M(E, 0, l,m ! {n})|2. (2.19)

This can be rewritten as the Argand circle equation:

(Re al)
2 + (Im al � 1)2 = R2

l , Rl =

s
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X

n2inel.
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Z
d⇧n|M(E, 0, l,m ! {n})|2.

(2.20)
It means that each al should lie within the Argand circle with the center at Im al = +1
and the radius 1. It lies on the Argand circle if the inelastic channels are closed for a
given l. The corollary is that Im al must be positive for each partial wave separately;
more precisely it satisfies 0  Im al  2. Furthermore, the real part of each al, as well
as the inelastic sum cannot be arbitrarily large:

(Re al)
2 +
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d⇧n|M(E, 0, l,m ! {n})|2  1. (2.21)

In practice one often uses the weaker bounds |Re al|  1 or
P
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{n})|2  1, which trivially follow from the above.
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 Multi-Higgs with HEFT-deformed Higgs cubic

that we have a continuous parameter to describe the SM deformations; in particular we
can entertain the limit of ��

3

! 0 where we recover the SM. Note that ��
3

! �1 does
not correspond exactly to the Luty model, as the latter does not have the h4 coupling
at all.

The interaction terms in Eq. (4.1) can be obtained from a gauge-invariant Lagrangian
with the Higgs doublet H provided the Higgs potential contains terms non-analytic at
H†H = 0. The required form is just a tad more complicated than in the Luty model:

V = m2

H(H
†H) + �(H†H)2 + ⇤3

1

(2H†H)1/2 + ⇤
3

(2H†H)3/2. (4.2)

The dimensionful parameters ⇤
1

and ⇤
3

parametrize the non-analytic deformation of the
SM. For ⇤3

1

= 3v2⇤
3

this potential leads to the cubic and quartic Higgs boson terms2 as
in Eq. (4.1) with ��

3

= 2v⇤
3

m2

h
. Here the Higgs boson mass is related to the parameters in

the potential by m2

h = 2�v2, while demanding vanishing of the linear h term fixes one
relation between the parameters and the VEV: m2

H = ��v2�6v⇤
3

. In this construction
the Lagrangian does not contain higher-order scalar self-interactions with only the Higgs
boson. On the other hand, the Lagrangian in Eq. (4.3) describes an infinite series of
terms involving even powers of G and arbitrary powers of h:

V � 3vm2

h

2
��

3

((h+ v)2 +G2)1/2 +
m2

h

2v
��

3

((h+ v)2 +G2)3/2. (4.3)

where I defined G2 = 2G
+

G� +G2

z.

4.2 Bounds from GG ! hn

Expanding Eq. (4.3) in G2, the terms with two Goldstone boson fields are

V � ��
3

3m2

hv

2

G2

h+ v
= ��

3

3m2

h

2
G2

1X

n=0

✓�h

v

◆n

. (4.4)

(There are additional Goldstone-Higgs interaction terms up to G2h2 terms coming from
the analytic (H†H)2 term in the potential but those of course do not lead to non-
perturbative behavior and are ignored in the following).

The rest of the analysis is identical as in the Luty section above. We consider scatter-
ing amplitudes of the isospin-0 2-body Goldstone state |[GG]I=0

i ⌘ 1p
3

(|G
+

G�i+ |G�G+

i+ |GzGzi).
The inelastic amplitude for scattering this state into n Higgs bosons is given by

|M([GG]I=0

! hn)| = ��
3

3
p
3n!m2

h

vn
. (4.5)

From Eq. (2.18), the corresponding s-wave amplitude is

|M([GG]l=0

I=0

! hn)| ⌘ |Mn| = 1

4
p
⇡
��

3

3
p
3n!m2

h

vn
. (4.6)

2For ⇤3
1 6= 3v2⇤3 we also get a correction to the SM quartic Higgs couplings. The following discussion

would be almost identical, but for simplicity we set ��4 = 0 here.
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leading to unitarity loss at some scale above v
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To set the bounds on the UV completion scale ⇤⇤ we now use Eq. (2.23) with l = 0.

1X
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Sn
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d⇧n|Mn|2

�����p
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=
1X

n=2

1

n!
Vn(⇤⇤)|Mn|2 ⇠ ⇡2, (4.7)

where Vn(x) = x2n�4

2(n�1)!(n�2)!(4⇡)2n�3

is the volume of the n-dimensional phase space [4].
Inserting everything and resumming the sum we get
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Clearly, this is satisfied for

⇤⇤

4⇡v
⇠ 2 log1/2

✓
4⇡v

mh|��3

|1/2
◆

(4.9)

This is almost the same as in the Luty model, except that we can now continuously take
the deformation to zero, raising this way ⇤⇤ to infinity (albeit exponentially slowly).
However, for any ��

3

of observable magnitude the cuto↵ will still be around 4⇡v. Note
that for exponentially small deformations the non-perturbativity scale is dominated by
processes with large n. That’s because the Taylor series of ex is dominated by the n-th
terms where n ⇠ x. This way one can estimate

n
max

⇠ ⇤2

⇤
(4⇡v)2

⇠ 4 log

✓
4⇡v

mh|��3

|1/2
◆

(4.10)

Hence, for ��
3

& 1 we have n
max

⇠ 3, and the perturbativity loss first appears in the
WW ! h3 process. But for ��

3

⇠ 10�2 we have n
max

⇠ 20, so for such tiny deformations
we should see perturbativity loss at the scale of ⇠ 10 TeV is first manifested in the
WW ! h20 process.

4.3 On the origin of the escape clause

We have seen above that for exponentially small deformations of the SM the scale where
perturbativity is lost can be parametrically above 4⇡v. This must be so because in
the limit of zero deformations the SM Higgs sector should eb completely healthy. For
practical applications, for any non-analytic deformations of observable magnitude the
cuto↵ will still be around 4⇡v. But from purely theoretical point of view the possibility
to have a cut-o↵ larger than 4⇡v is surprising. This is because non-analytic terms
arise from integrating out particles whose masses are proportional to v, and thus these
particles cannot be heavier than 4⇡v.

We argue that the escape clause appears because, for small deformations, the e↵ective
theory cannot quite tell if its interactions come from genuinely non-analytic terms or
from a highly tuned series of analytic (H†H)n terms in the SM EFT. Consider the
analytic potential of the form

V =
NX
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(4.11)
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to have a cut-o↵ larger than 4⇡v is surprising. This is because non-analytic terms
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