Quarkonia: experiment

Émilien Chapon for the LHC experiments

CERN

HL-LHC workshop

Open questions regarding quarkonium production in heavy ion collisions

- Do we understand the different ingredients for quarkonium suppression?
 - contribution from feed-down
 - cold nuclear matter effects
 - low p_T: transport vs statistical models
 - high p_T: energy loss, importance of gluon fragmentation
- Ground vs excited states in pp, pPb, PbPb?
- What is the impact of multiplicity? Does polarisation depend on multiplicity?
- What is the R_{AA} in very peripheral PbPb? Importance of EM production?
- What is the flow of heavy quarks (c, b)? Is it implying their complete thermalisation?

Understanding quarkonium suppression in AA

Quarkonium is a crucial observable for QGP studies

- SHM (J/ $\!\psi$ newly-generated at ${\cal T}=156\,{\rm MeV})$ and transport models both describe J/ $\!\psi$ data
- As expected (transport models): increase of J/ ψ R_{AA} at the LHC at low p_{T}

High p_T quarkonium suppression

- Strong J/ ψ suppression is observed at high $p_{\rm T}$
- For $p_T \gg M_Q$, expected to be similar to light partons.
- True for J/ ψ but not for B-hadrons? Hint of different behaviour between prompt and nonprompt J/ ψ

High p_T quarkonium suppression

- Strong J/ ψ suppression is observed at high $p_{\rm T}$
- For $p_T \gg M_Q$, expected to be similar to light partons.
- True for J/ ψ but not for B-hadrons? Hint of different behaviour between prompt and nonprompt J/ ψ

High p_T quarkonium suppression

More data will allow us to reach higher p_T and with higher precision

- Test energy loss models:
 - collisional vs radiative?
 - coherent energy loss \rightarrow jet quenching?
- Hadronisation via (medium modified) fragmentation?

High *p*_T quarkonium suppression

More data will allow us to reach higher p_T and with higher precision

- Test energy loss models:
 - collisional vs radiative?
 - coherent energy loss → jet quenching?
- Hadronisation via (medium modified) fragmentation?

More data also needed for the high p_{T} behaviour of bottomonium suppression

• Very low S/B ratio: limited precision with current data

- Very low S/B ratio: limited precision with current data
- ALICE will also benefit from the MFT

Excited charmonium production in PbPb: distinguish between transport and statistical models

E. Chapon (CERN)

Excited charmonium production in PbPb: distinguish between transport and statistical models (χ_c would also help)

E. Chapon (CERN)

Excited bottomonium production: PbPb

- What is the *R*_{AA} of $\Upsilon(3S)$?
- What is the R_{AA} of $\Upsilon(1S,2S,3S)$ in peripheral events?
- Sensitivity to η/s with 10 nb $^{-1}$

Excited quarkonia: what about pPb?

Excited quarkonium production in pPb requires further studies and understanding (also needed to understand PbPb)

p 10/

Studies as a function of multiplicity

Impact of multiplicity on quarkonium production and polarisation in pp and pPb? More data needed for further studies

E. Chapon (CERN)

Quarkonia: experiment

Photoproduction

- J/ψ photoproduction in very peripheral events
- Currently strongly statistically limited in ALICE at midrapidity \rightarrow TPC upgrade

ALI-SIMUL-140120

Clear flow of J/ψ in PbPb

Can reach very high precision with 10 nb^{-1} :

- what is the high $p_T v_2$ of J/ψ ?
- also precise measurement at midrapidity (where the v₂ is predicted to be maximum)

- In PbPb: primordial vs regenerated J/ ψ , complementary to $R_{\rm AA}$. Also Eloss information
- Origin of v₂ in pPb? Similar with PbPb?

Expected improvements from the experiments

ALICE

Phase-I upgrades with major impact on quarkonium measurements (improved tracking, higher readout rate):

- Midrapidity (electrons): ITS, TPC, TRD
- Forward rapidity (muons): MFT

LHCb

- Triggerless readout and full software trigger at 30 MHz in pp collisions
- pPb and pA fixed target below pp occupancy
 - · Limitation in fixed target mode: luminosity
- AA collisions: preferred running condition to be defined
 - collider mode: can central collisions can be analysed with the upgrade detector (pixel VELO, ...)?
 - fixed target mode: maximal occupancy in central PbAr about a factor 5 below central PbPb

Supplementary material

$\psi(2S)$ in ALICE at midrapidity

CERN