Future theoretical breakthroughs due to flow and correlation measurements

Stefan Flörchinger (Heidelberg U.)

High Luminosity LHC, CERN, October 31, 2017.

Heavy Ion Collisions

Why correlations and fluctuations are interesting

- Understand quark-gluon plasma fluid properties.
- Understand *initial state* and very early dynamics.

Understand quark gluon plasma fluid properties

- Evolution is space and time?
- Close-to or far-from local equilibrium?
- Do thermodynamic properties match lattice QCD?
- What transport properties describe a relativistic fluid properly?
 - shear viscosity η and bulk viscosity ζ
 - ullet relaxation times $au_{
 m shear}$ and $au_{
 m bulk}$
 - more second order terms?
- Transport properties from first principles?
- Fluctuations in fluid fields described by a local Gibbs ensemble? Governed by local temperature T(x) and fluid velocity $u^{\mu}(x)$?
- What other fields play a role? Chiral condensate $\sigma(x)$, baryon density $n_B(x)$, or electromagnetic fields?
- Spin diffusion? Anomalous fluid dynamics?

Understand initial state and very early time dynamics

- How precisely does the nuclear wave function describe the initial state?
- How does the concept of a parton distribution function have to be generalized?
- Can dynamic quantum fluctuations become macroscopic as a result of the expansion as in early time cosmology? Can we detect them?
- Can we constrain early time dynamics and "thermalization scenarios"?

Experimental observables

Particle number distribution

$$\frac{dN_j}{dpd\phi d\eta}$$

- 1 discrete label particle "species" j: mass, charges, spin
- ullet 3 continuous labels transverse momentum p, angle ϕ and rapidity η
- Information about event-by-event statistics in single particle spectrum

$$\left\langle \frac{dN_j}{dpd\phi d\eta} \right\rangle$$
 (1 discr., 3 cont.)

two-particle correlation function

$$\left\langle \frac{dN_{j_1}}{dp_1d\phi_1d\eta_1} \frac{dN_{j_2}}{dp_2d\phi_2d\eta_2} \right\rangle$$
 (2 discr., 6 cont.)

and higher order particle correlation functions

$$\left\langle \frac{dN_{j_1}}{dp_1 d\phi_1 d\eta_1} \cdots \frac{dN_{j_n}}{dp_n d\phi_n d\eta_n} \right\rangle \qquad \text{(n discr., 3 n cont.)}$$

Expansion in harmonics

- Integrated observables
 - all charged particles
 - integrated over transverse momentum
- Expansion in azimuthal modes

$$\frac{dN}{d\phi d\eta} = \frac{dN}{d\eta} \frac{1}{2\pi} \left[1 + \sum_{m} e^{im\phi} V_m(\eta) \right]$$

or in azimuthal and rapidity modes

$$\frac{dN}{d\phi d\eta} = \frac{dN}{d\eta} \frac{1}{2\pi} \left[1 + \sum_{m} \int_{k} e^{im\phi + ik\eta} \tilde{V}_{m}(k) \right]$$

Very many correlation functions possible, e. g.

$$\langle V_2^*(\eta_1)V_2(\eta_2)\rangle, \qquad \langle V_2^*(\eta_1)V_3^*(\eta_2)V_5(\eta_3)\rangle$$

or more generally

$$\langle V_{m_1}(\eta_1)V_{m_2}(\eta_2)\cdots V_{m_n}(\eta_n)\rangle$$

• Also particle identified and momentum resolved...

Future theoretical breakthroughs

- Learn how to extract space-time history from experimental data

 rapidity resolved correlation functions
- Distinguish close-to and far-from equilibrium quark gluon plasma
 - → test fluctuation-dissipation relation
 - ightarrow compare correlation and response functions
- Understand baryon diffusion and heat conduction in quark-gluon plasma
 → correlation functions of baryon minus anti-baryon numbers
- Quantify charge transport as a background to the chiral magnetic effect
 →correlation functions of net charges
- Understand the nuclear wave function beyond PDFs

 → access initial state fluctuations in energy-momentum tensor via fluid
 dynamic response
- Understand a relativistic fluid (quark-gluon plasma) from first principles of quantum field theory
 - \rightarrow sustained effort in interplay of experiment and theory

We need to invest into theory

- With more and more complex and differential observables the comparison between experiment and theory becomes more complex.
- Experimentalists must be enabled to directly compare to a transparent and powerful standard model
- Simple-to-use numerical implementation needed

Mode-by-mode fluid dynamics

- determine space-time history for smooth and symmetric events
- response functions for all kind of fluctuations around this
- construct map from initial to final state
- rapidity dependent perturbations
- baryon number & charge perturbations
- could add also electro-magnetic fields, chiral order parameter etc.

Improved statistics can help

- High Luminosity LHC can improve statistics significantly
- Higher order correlation functions
 - test collectivity in more detail
- More differential correlation functions
- Charge correlation functions
 - · differential in azimuthal angle and rapidity
 - charge transport and electric conductivity
 - background to chiral magnetic effect
- Baryon number correlation functions
 - · differential in azimuthal angle and rapidity
 - baryon diffusion / heat conductivity
 - background to critical fluctuations close to hypothetical critical end point

