Small Systems: Theory
Heavy-ion like phenomena in proton-proton collisions

Christian Bierlich
bierlich@thep.lu.se
Lund University

Oct 31, 2017
High Luminosity Workshop CERN
Why is collectivity in small systems so interesting?

- Collectivity in small systems challenges two paradigms at once!
 1. How far down in systems size does the "SM of heavy ions" remain?
 2. Can the standard tools for min bias pp remain standard?

"Huge potential to learn about underlying dynamics, i.e. non-perturbative QCD." (JFGO, this WS)

Strangeness

 Ratios of yields to $(\pi^+\pi^-)$

- K_S^0
- $\Lambda+\Lambda$ ($\times 2$)
- $\Xi+\Xi$ ($\times 6$)

ALICE pp 7 TeV

- $p-Pb$, N_{ch} = 5.02 TeV
- $Pb-Pb$, N_{ch} = 2.76 TeV

ATLAS pp 13 TeV

- N_{ch} = 120

CMS pp 7 TeV

- $N_{ch} \geq 110$, $1.0 \text{ GeV/c} < p_T < 3.0 \text{ GeV/c}$

Christian Bierlich (Lund)

Small Systems: Theory

Oct 31, CERN
The ”microscopic model” of collectivity at a glance

- Collective effects, based on interacting Lund strings \((\text{in Pythia8 v. 8.230}) \).
- Additional input fixed or inspired by lattice, few tunable parameters.
- Improving strangenessness with ropes \((\text{CB, Gustafson, Lönnblad, Tarasov: arXiv:1412.6259 [hep-ph]}) \)
- Extendable to pA and AA through Angantyr \((\text{CB, Gustafson, Lönnblad, arXiv:1607.04434}) \).
The ”microscopic model” of collectivity at a glance

- Collective effects, based on interacting Lund strings (in Pythia8 v. 8.230).
- Additional input fixed or inspired by lattice, few tunable parameters.

1. \(t \approx 0 \text{ fm}. \) Strings no transverse extension. No interactions, partons may propagate.
2. \(t \approx 0.6 \text{ fm}. \) Parton shower ends. Depending on ”diluteness”, strings may shove each other around.
3. \(t \approx 1 \text{ fm}. \) Strings reach full transverse extension. Shoving effect maximal.
4. \(t \approx 2 \text{ fm}. \) Strings will hadronize. Possibly as a colour multiplet (a ”Rope”).
Case I: The "ridge" in small systems

- One of the surprises of small systems.
- Hard to quantify, when N_{ch} small, without large rapidity gap.
- This talk: A new model for transporting IS parton profile to FS.
- Strings allowed to "shove" each other \rightarrow transverse pressure.
- Many similarities with a perfect liquid but...

No assumption of a deconfined nor thermalized plasma.
Strings are vortex lines in S.C.

For \(t \to \infty \), profile known from lQCD
(Cea et al. arXiv:1404.1172 [hep-lat]) giving:

\[
f(d_\perp) = \frac{g \kappa d_\perp}{R^2} \exp \left(-\frac{d_\perp^2(t)}{4R^2} \right).
\]

Domained by electric field \(\to g = 1 \).

Reality:

- **Type 1** Energy to destroy vacuum.
- **Type 2** Energy in current.

Pairwise, momentum conserving, ”kicks”.

Includes ”medium recoil” by construction, promise for including jets.
Resolving the kicks

- We resolve kicks as gluons – not best approach.
- When is a gluon free of the string?

\[\lambda_g \approx 2\pi k_\perp, \quad l_{ur} = k_\perp / 2\kappa \Rightarrow k_{\perp,0} \gtrsim 1.6 \text{GeV} \]

- Better (future improvement):

 Soft Put directly on hadrons.

 Hard Resolved gluons (also effects for sub-jet observables).
The ridge from interacting strings

- Ridge produced by string shoving, or hydrodynamical expansion.
- Consequences for the deconfined thermalized plasma?
- What can we do to discriminate between models?
 1. Better understanding of IS geometry (\textsc{Pythia8} open interface)?
 2. Interplay with FS interactions (particle production + jet quenching)?

(EPOS with hydro, arXiv:1011.0375)

(PYTHIA8 with shoving)
QCD coherence and Colour Reconnection?

- Parton shower + strings are explicitly large N_c.

But we know nature is not!
CR reshuffles the colour configuration after the shower.

Very ad hoc.

Recently more rigorous attempt in coherence "toy model" (Blok et al.: arXiv:1708.08241 [hep-ph]).

Open question how/if "CR" can explain collectivity, or if FS interactions are indeed needed.
QCD coherence and Colour Reconnection?

- Parton shower + strings are explicitly large N_c.
- But we know nature is not!
- CR reshuffles the colour configuration after the shower.
QCD coherence and Colour Reconnection?

- Parton shower + strings are explicitly large N_c.
- But we know nature is not!
- CR reshuffles the colour configuration after the shower.
 1. Very ad hoc.
QCD coherence and Colour Reconnection?

- Parton shower + strings are explicitly large N_c.
- But we know nature is not!
- CR reshuffles the colour configuration after the shower.
 1. Very *ad hoc*.

- Recently more rigorous attempt in coherence ''toy model'' (Blok *et al.*: arXiv:1708.08241 [hep-ph]).

- Open question how/if ''CR'' can explain collectivity, or if FS interactions are indeed needed.
Case II: Strangeness across systems

- Smooth transition surprising – does it hold for high mult. pp?
- Explained well by DIPSY + Rope Hadronization across systems.
- In Pythia8 for pp, AA coming soon. Rivet for comparisons would be useful.
- Now $t \sim 2\text{fm}$.
- Strings fragment together in colour multiplets ("Ropes").
- Ropes have higher string tension, giving more strange quarks.
- (Maybe even c (and b))

\[
\begin{array}{c}
\text{ratio to } \pi^+ \pi^- \\
\text{2K}_0^0 / \pi^\pm \\
2(\Lambda + \bar{\Lambda}) / \pi^\pm \\
6\phi / \pi^\pm \\
6(\Xi + \bar{\Xi}) / \pi^\pm \\
16(\Omega + \bar{\Omega}) / \pi^\pm \\
e^+ e^- \\
\end{array}
\]
An aside: Problematic extrapolation

- Comparing theory to relevant measurements, technical problems arise.
- Levy-Tsallis fitting introduces a convoluted model uncertainty which is not necessary.

Resolution: Publish what is actually measured.
- Rivet for model independent comparison.
The Rope Hadronization model

- Idea from 1980’s. Many different implementations.

- Two (triplet) strings acts coherently.

 \[r \oplus r \]

 \[\bar{r} \oplus \bar{r} \]

 Case (a), \(c_1 = c_2 \):

 \[g \oplus \bar{g} \]

 \[g \oplus \bar{g} \]

 Case (b), \(c_1 \neq c_2 \):

 More strange quark from higher string tension.

 \[\exp \left(-\frac{\pi(\bar{m}_s^2 - m_u^2)}{\kappa} \right) \]

 Exponential surpresseion makes \(c \) and \(b \) very rare for \(\kappa = 1 \) GeV/fm.

 At \(\kappa = 7 - 10 \) GeV/fm, \(c \) becomes relevant – feasible in very high mult pp or AA.
Contrasting with thermal models \cite{Vislavicius and Kalweit: arXiv:1610.03001 [hep-ex]}

- Thermus gets several features by relating N_{ch} to system size.
- Several points: ϕ is of importance, apples to apples on x-axis, transition region between high mult pp and AA.
Input for discussion

Several qualitatively different models can explain soft features. Clearly a need for better, more quantitative, model independent validation.
Input for discussion

Several qualitatively different models can explain soft features. Clearly a need for better, more quantitative, model independent validation.

How can we eliminate models thoroughly?
Input for discussion

Several qualitatively different models can explain soft features. Clearly a need for better, more quantitative, model independent validation. How can we eliminate models thoroughly?

- Ridge/Flow might not be enough – sensitive to IS geometry, but not necessarily the transfer mechanism.

- Higher order cumulants might bring higher order progress.
 - Efforts on Rivet usage crucial here.

Strangeness explained by several models. Also EPOS core–corona.

- Need to go more differential. Event shapes conceptually promising.

- Soft behaviour in events with hard trigger.

Jet flavour chemistry for pp.

Sub-jet studies initiated, but still preliminary (Mangano and Nachman: arXiv:1708.08369 [hep-ph]).
Input for discussion

Several qualitatively different models can explain soft features. Clearly a need for better, more quantitative, model independent validation.

How can we eliminate models thoroughly?

- Ridge/Flow might not be enough – sensitive to IS geometry, but not necessarily the transfer mechanism.
- Will higher order cummulants bring higher order progress?
- Efforts on Rivet usage crucial here.
Input for discussion

Several qualitatively different models can explain soft features. Clearly a need for better, more quantitative, model independent validation.

How can we eliminate models thoroughly?

- Ridge/Flow might not be enough – sensitive to IS geometry, but not necessarily the transfer mechanism.
- Will higher order cummulants bring higher order progress?
- Efforts on Rivet usage crucial here.
- Strangeness explained by several models. Also EPOS core–corona.
Input for discussion

Several qualitatively different models can explain soft features. Clearly a need for better, more quantitative, model independent validation.

How can we eliminate models thoroughly?

- Ridge/Flow might not be enough – sensitive to IS geometry, but not necessarily the transfer mechanism.
- Will higher order cummulants bring higher order progress?
- Efforts on Rivet usage crucial here.
- Strangeness explained by several models. Also EPOS core–corona.
- Need to go more differential. Event shapes conceptually promising.
- $\langle p_\perp \rangle$. Problem with extrapolation to unmeasured phase space.
Input for discussion

Several qualitatively different models can explain soft features. Clearly a need for better, more quantitative, model independent validation. How can we eliminate models thoroughly?

- Ridge/Flow might not be enough – sensitive to IS geometry, but not necessarily the transfer mechanism.
- Will higher order cummulants bring higher order progress?
- Efforts on Rivet usage crucial here.
- Strangeness explained by several models. Also EPOS core–corona.
- Need to go more differential. Event shapes conceptually promising.
- \(< p_\perp > \). Problem with extrapolation to unmeasured phase space.
- Soft behaviour in events with hard trigger.
Input for discussion

Several qualitatively different models can explain soft features. Clearly a need for better, more quantitative, model independent validation.

How can we eliminate models thoroughly?

- Ridge/Flow might not be enough – sensitive to IS geometry, but not necessarily the transfer mechanism.
- Will higher order cummulants bring higher order progress?
- Efforts on Rivet usage crucial here.
- Strangeness explained by several models. Also EPOS core–corona.
- Need to go more differential. Event shapes conceptually promising.
- $\langle p_\perp \rangle$. Problem with extrapolation to unmeasured phase space.
- Soft behaviour in events with hard trigger.
- Jet flavour chemistry for pp.
- Sub-jet studies initiated, but still preliminary (Mangano and Nachman: arXiv:1708.08369 [hep-ph])