

HL-LHC WORKSHOP - WG5: HEAVY IONS EM RADIATION / LOW MASS DILEPTONS

Outline:

- Physics motivation
- Expected performance in Run3/4
 - Dielectrons
 - Dimuons
 - Dark photons
- Conclusion and ongoing work

Based (mainly) on:

ALICE Upgrade Lol:

ITS TDR: TPC TDR: MFT TDR: CERN-LHCC-2012-012 CERN-LHCC-2013-014 CERN-LHCC-2013-024 CERN-LHCC-2013-020 CERN-LHCC-2015-001

MICHAEL WEBER (SMI) ON BEHALF OF THE ALICE COLLABORATION 31.10.2017

ELECTROMAGNETIC PROBES OF THE QGP

Dilepton emission rate in thermal equilibrium:

$$\begin{aligned} \frac{\mathrm{d}N_{ll}}{\mathrm{d}^4 x \mathrm{d}^4 q} &= -\frac{\alpha^2}{3\pi^3} \frac{L(M^2)}{M^2} \operatorname{Im} \Pi^{\mu}_{\mathrm{em},\mu}(M,q;\mu_B,T) \\ &\times f^B(q_0;T) \;, \end{aligned}$$

Photons: measure γ (Calo, PCM) **Dileptons**: measure e⁺e⁻ or $\mu^+\mu^-$ pairs

- Couple to **EM current**
- **very low interaction** with QCD medium (no strong interaction)
- Sensitive to Photons:
 - Thermal radiation

Dileptons:

- Thermal radiation
- Vector meson spectral shape
- Beyond SM particles with J^{PC}=1⁻⁻ (e.g. dark photons)

THERMAL RADIATION (PHOTONS)

- Measure thermal radiation (black body photons)
- First measurement at LHC from soft exponential component of photon p_T spectrum (*ALICE, Phys.Lett. B754 (2016) 235*): *T* ~ 300 MeV (effective temperature averaged over system evolution)
- Direct photon flow larger than available theory predictions

- Measure thermal radiation (black body photons)
- First measurement at LHC from soft exponential component of photon p_T spectrum (*ALICE, Phys.Lett. B754 (2016) 235*): *T* ~ 300 MeV (effective temperature averaged over system evolution)
- Dileptons:
 - Map temperature during system evolution
 - Invariant mass method not sensitive to "blue-shift" from radial flow

(MeV)

Temperature,

INVARIANT MASS SPECTRA

Large thermal radiation contribution above 1 GeV/c²

R. Rapp, arXiv:1304.2309 [hep-ph]

ALICE AFTER 2020

- Improved vertex resolution
 - Better separation of electrons from charm and bottom decays
- Reduced material budget and improved low p_T efficiency
 - Smaller background from conversion electrons
- Dedicated low B field run
 - Recover low p_{T} tracks
 - 3 nb⁻¹ at B = 0.2 T
- Higher rate capability
 - 50 kHz Pb-Pb
- Muon forward tracker (MFT) in addition to muon spectrometer
 - Improved mass resolution
 - Reduced background

LOW MASS DIELECTRONS

UPGRADE IMPROVEMENT

UPGRADE IMPROVEMENT

SPECTRAL FUNCTION

After subtraction of long-lived lightand heavy-flavour sources

TEMPERATURE EXTRACTION

From a fit to the invariant mass spectrum from 1.1 to $1.5 \text{ GeV}/c^2$

ELLIPTIC FLOW (20-40% CENTRALITY)

SMALL SYSTEMS

- Thermal radiation in small systems?
- R. Rapp, IS2014:
 - 10% thermal contribution in MB p-Pb collisions

ESTIMATES FOR RUN 3/4 (p-Pb, 50 nb⁻¹)

[•] Run 1 results based on $L_{int} \sim 50 \ \mu b^{-1}$.

- Stat. uncertainties
 - In the interesting mass regions (0.3<m_{ee}<0.7 GeV/c²) and (1<m_{ee}<3 GeV/c²):
 - σ_{stat} ~ 20 50%
- For Run 3/4 (50 nb⁻¹)
 - σ_{stat}~1 2%
- Measurement will not be limited by stat. uncertainties

ALI-PREL-69715

LOW MASS DIMUONS

UPGRADE IMPROVEMENT (Pb-Pb)

SPECTRAL FUNCTION

DARK PHOTONS

BEYOND STANDARD MODEL -0 9 000000 g mmm π^{θ} π^{θ} g mmm q a a a anna an Ligł ector BSM bosons could be observed in high-energy • γ'/Z' volumes produced), high-luminosity nuclear (wit **coll**i_a llis & P. Salati, Nuclear Physics B342 (1990) J. Davis & C. Böhm, arXiv:1306.3653 (f) in the thermal dilepton production from the QGP for $> 3 \text{ GeV}/c^2$: dilepton measurements in ALICE could set limits d lepton-couplings of light BSM bosons (

ALICE: feasibility studies on dark photons of mass < 100 MeV/ c^2 ٠

ALI-PREL-85298

DARK PHOTONS (RUN3)

ALI-SIMUL-85317

WORLD DATA + ALICE

GeV scale?

J. Davis, C. Boehm, arXiv:1306.3653

Dark Sector Community Report 2016 arXiv: 1608.08632

OTHER LHC EXPERIMENTS, e.g. LHCb

- intermediate-mass dileptons: precision temperature measurement above the φ mass via thermal radiation to be checked also in high-multiplicity p-Pb, pp
- masses below to be seen, current minimal p_{μ} with ID 3 GeV/c: $p_{T} = 200, 400 \text{ MeV/c} (\eta = 4.0, 2.5)$

LHCb, arXiv:1710.02867 [hep-ex]

OTHER LHC EXPERIMENTS, e.g. LHCb

• Possibility to measure below 100 MeV?

LHCb, arXiv:1710.02867 [hep-ex]

ALICE

CONCLUSIONS

• Low mass dielectrons:

Statistical uncertainty	
Temperature (intermediate mass)	10%
Elliptic flow $(v_2 = 0.1)$ [4]	10%
Low-mass spectral function [4]	20%

- Low mass dimuons:
 - Higher statistics (10 nb⁻¹), but higher p_T cut and larger HF background than dielectrons
 - prompt signals from QGP measurable within 20% uncertainty
- Small systems:
 - Thermal radiation from high multiplicity pp and p-Pb collisions?
 - Will not be limited by stat. uncertainties
- Dark photons:
 - Sensitivity $\epsilon^2 \sim 10^{-7}$ for 20<M_{ee}<90 MeV/ c^2

ONGOING WORK

- Dielectrons:
 - **Improving simulations** with better understanding of combinatorial background and pointing resolution
 - Improve understanding of systematic uncertainties: HF (mass shape), background subtraction,...
 - Deduce virtual photon method performance
- Dimuons:
 - Tuning analysis cuts for heavy-flavour reduction above 1 GeV/ c^2
 - Improve understanding of systematic uncertainties: HF (mass shape),...
- Photons:
 - Higher precision and statistics needed
 - Better understanding of **material budget** (main source of systematic uncertainties), explore new observables with canceling systematics
 - Performance plots for physics cases (thermal radiation, flow, interferometry,...)

BACKUP

WHY NOT REAL PHOTONS?

 $E_{\gamma}rac{{
m d}^3N_{\gamma}}{{
m d}^3p_{\gamma}}\propto e^{-E_{\gamma}/T_{
m eff}}$

- Large blueshift at late times when $T \approx 150 200 \text{ MeV}$
- Extraction of initial temperature from data requires comparison to (hydro) model

LOW B FIELD

Figure 2.49: Acceptance for e^+e^- -pairs from PYTHIA at B = 0.5 T (left) and B = 0.2 T (right).

NEW INNER TRACKING SYSTEM

32

TRANSVERSE MOMENTUM DISTRIBUTIONS

VIRTUAL PHOTON MEASUREMENT (PB-PB,RUN 1)

Under the assumption that the ratio of direct to inclusive is the same as real to virtual → direct = r x inclusive (yields)

VIRTUAL PHOTON MEASUREMENT (PP,RUN 1)

DARK PHOTONS – LHC B

LHCb, Phys. Rev. Lett. 116, 251803 (2016)

GEV-SCALE NEW GAUGE BOSONS

J. Davis, C. Boehm, arXiv:1306 30300