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HPC Systems

Exascale System Developments (Architecture & Concepts])

2017 Focus Topics

« Memory Outlook

« Interconnects for HPC Systems

« Programming Models (Concepts for Exascale)

HPC Applications & Algorithms

« Life Sciences

Energy Exploration
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‘ Iliiuilinnll|Inlaﬂal|“|||“|l|“1|llﬂ| « Algorithms for Extreme Scale in Practice

« Large Scale Engineering & Cloud Computing

HPC Trends & Challenges

« High Performance Visualization

« Big Data Experiments & Big Data Analysis

“ISC High Performance focuses on HPC
technological development and its

application in scientific ﬁE|dS, as well as Deep Learning Day [Changing the HPC Landscape)
its adoption in commercial environments”

« Quantum Annealing for Combinatorial Optimization Problems

Industrial Day (HPC for Industry)
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Academia

Overview

* 3 days
conference and
exhibition

e Tutorials
* Workshops

e 450 speakers
* 150 exhibitors
e 3200 attendees

Industry
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Technical program

ISC 2017
TECH PROGRAM

GeantV - Next generat]on simulation prototype
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Introduction and Motivation

Simulation of particle transport through matter is fundamental
for understanding the physics of High Energy Physics (HEP)
experiments, as the ones at the Large Hadron Collider (LHC) at
CERN. Such experiments have dedicated so far most of their
worldwide distributed CPU budget - in the range of half a million
CPU-years equivalent — to simulation. In particular, the most
computing-intensive components are geometry modeling,
navigation through millions of objects and physics models.

Parallel particle transport

The scope of the project is the development of a community
supported, open-source, next generation particle transport code
for HEP integrating both detailed and fast simulation algorithms,
optimized for the emerging parallel and vector architectures.
Beta release by end of 2018.

+ Group particles by locality into vectors (baskets)
+ Invoke geometry to determine particle position
+ Invoke physics to predict stochastically a process location
+ Validate proposed physics step against geometry
+ Propagate and regroup baskets

» |SC 2017 had 275 submissions in total:
— 65 research papers; 22 accepted.

— 37 research poster submissions; 21 accepted.

Geometry redesign for vectorization

VecGeom s a geometry modeler evolved from legacy geometry libraries
{Géania, ‘Usolids, ROOT). It introduces 2 many-particle API besides the
standard S36F ¥ne, and relies on templated backend abstraction to enable
both platform/architecture specific optimizations and vector/scalar API
polymorphism.

Vec[tori etry) = Eve i
Vecltorized)Geametry) « Evolved Usolids
YR anypartae API o
+ geometry mode/navigation

GeantV is a collaboration among several research institutes. It is
410 Fartially funded by Intel Parallel Computing Center program
(geant.cern.ch)

— 35 project poster submissions; 25 accepted.

— 23 PhD forum submissions; 13 accepted.
— 47 BOF submissions; 26 accepted.

— 42 Tutorial submissions; 13 accepted.

— 26 workshop submissions; 21 accepted.

* Of the 275 submissions 141 accepted.
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Intel Xeon Phi for detector simulations

The X-Ray benchmark tests geometry navigation in a real
detector geometry: a detector volume is scanned with
virtual rays along a given direction. Each ray is propagated
from boundary to boundary and the number of crossings
is counted.

Scalar case: Simple loop over pixels, generating a ray

Ideal vectorization case: Fill vectors with N times the same
X Ray, using this as reference for the maximum achievable
vectorization

istic (basket) case: Fill baskets per geometry volume as
icles are entering (as in GeantV)

pai

Scalar navigation performance in full CMS (Compact Muon Solenoid,
one of the major LHC experiments) geometry. Left, real time for the
simulation of 10 pp events at 7TeV using VecGeom instead of legacy
existing geometry. Right, the resident memory of the full application.
(Platform: Intel Haswell)

Resident memory VecGeom

Real time VecGeom versus
ROOT geometry versus ROOT
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Simplified geometry
emulating 2 detector
tracking system.

Dispatching one
full scan (image)
per task

A pixelis
produced for
each ray having 2

grey
proportional to
the number of
crossings.

X2 gain from vectorization when filling all vector pipelines for

AVX512 wrt AVX2
pviy
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The full prototype

« Exercise at the scale of LHC experiments
« Full geometry + uniform magnetic field

« Tabulated physics, 1MeV energy threshold

« Full track transport and basketization procedure

« Compare scalability to classical abproach single-thread
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Sub-node clustering

s

Known scalability issues due to re-basketizing
" WA
synchronization

Deploy several propagators to cluster
resources at sub-node leve

Improve scalability

Address many-node and multi-socket (HPC)
modes + non-homogenous resources

First tests on KNL

GeantV for HPC environment

tandard mode (1 process per

node]

Need work balancing
Check output granularity
[merging may be required) —

Multi-tier mode (event servers|
Gets events from file, handles
merging and workioad balancing
Communication with event
servers via MPI

&=L

Machine Learning for fast simulation

Afaster approachis to treat traditional simulation as a black-box
and replace it by a deep learning algorithm trained on different
particle quantities. We are testing several techniques such as
generative adversarial networks (GANs) to replace the Monte
Carlo approach. We expect to achieve 2 significant speedup (x25)
with respect to GeantV full simulation approach. Development of
such tool can further benefit other fields, such as radioactivity
protection, environmental modeling and medicine.

Single particle energy deposits in the Linear
Collider Detector calorimeters generated by a GAN

“1SC
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Motivation: The Age of Networks

Networks

Internet

* Conference keynote by Jennifer Tour Chayes,
Microsoft Research

* Dedicated Deep Learning day:
 How Deep Learning is Changing the HPC Landscape

* Autonomous driving an Connected Vehicles b
- Mathematical and Algorithmic Problems on Networks

Economic network Gene regulatory network Neural network

* Modeling networks
| * Sampling from and machine learning of networks

Deep Representations of Visual Descriptions * Processes on networks
e Algorithms on networks

. . . * Network reconstruction algorithms
Generative Adversarial Networks Architecture g

for Image Synthesis from Text

| The beak is yellow and pointed and the wings are blue. |

Zeynep Akata

Max-Planck Institute for Informatics

ential
encodin

4 o p m
Convolutional s

June 21, 2017

| The beak'is yellow arTcT‘p’éi‘r‘i(ed and the wings are blue. ‘

[Reed and Akata et.al. CVPR'16]




HPC

* The HPC event in Europe

e Showcase of most powerful systems

SUNWAY TAIHULIGHT

« SW26010 processor (Chinese design, ISA, & fab) B

» 1.45GHz
*  Node =260 Cores (1 socket)
— 4 - core groups
— 32 GB memory
* 40,960 nodes in the system
* 10,649,600 cores total
* 1.31 PB of primary memory (DDR3).
» 125.4 Pflop/s theoretical peak
» 93 Pflop/s HPL, 74% peak
* 15.3 Mwatts water cooled

» 3 of the 6 finalists for
Gordon Bell Award@SC16

. . Sunway TaihuLight
1|  National Supercomputing NRCPC NRCPC Sunway SW26010 China | 10,649,600 930 15.4
Center in Wuxi 260C 1.45GHz ’
. . . Tianhe-2
2 'ﬁ:;ﬁ:,‘:;‘%’;‘g’,f;f,}? of NUDT NUDT TH-IVB-FEP, China 3,120,0000 33.9| 17.8
gy Xeon 12C 2.2GHz, IntelXeon Phi
Swiss National Supercomputing Piz Dalnt
3 Centre (CSCS) Cray Cray XC50, Switzerland 361,760, 19.6 2.27
Xeon E5 12C 2.6GHz, Aries, NVIDIA Tesla P100
. Titan
Oak Ridge
4 . Cray Cray XK7, USA 560,640 17.6 8.21
National Laboratory Opteron 16C 2.2GHz, Gemini, NVIDIA K20x
. Sequoia
5 Lawrence Livermore IBM BlueGene/Q, USA 1,572,864 17.2| 7.89
ry Power BQC 16C 1.6GHz, Custom
Cori
Lawrence Berkeley
6 N Cray Cray XC40, USA 622,336 14.0 3.94|
National Laboratory Intel Xeons Phi 7250 68C 1.4 GHz, Aries
7 JCAHPC Fujit MERGY OX1640 J 556,104 2.72
P ujitsu PRIMERGY CX1640 M1, apan X 13.6 .
Joint Center for Advanced HPC Intel Xeons Phi 7250 68C 1.4 GHz, OmniPath
. K Computer
g | RIKEN Advanced Instituts for Fujitsu SPARC64 VIlifx 2.0GHz, Japan 795,024 10.5 127
Computational Science Tofu Interconnect
9 Argonne IBM Blue“é:?,e/q USA 786,432 8.59| 3.95
National Laboratory Power BQC 16C 1.6GHz, Custom
Los Alamos NL / Trinity
10 Sandia NL Cray Cray XC40, USA 301,0564] 8.10 4.23
Xeon E5 16C 2.3GHz, Aries
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The List.



mperial Collese \Why | do what | do, and what I've learned

Compiler construction as tax evasion

Two topics: taxation and representation

Software:

65 years of
compiler
development

Paul Kelly

Group Leader, Software
Performance Optimisation
Department of Computing

Imperial College London

Joint work with David Ham (Imperial Maths),
Lawrence Mitchell (Imperial Computing)

And many others....

Engaging with applications to exploit domain-specific
optimisations can be incredibly fruitful
B Compiling general purpose languages is worthy but usually incremental

Compiler architecture is all about designing intermediate
representations — that make hard things look easy

B Tools to deliver domain-specific optimisations often have domain-specific
representations

B Premature lowering is the constant enemy (appropriate lowering is great)

Along the way, we learn something about building better
general-purpose compilers and programming
abstractions

E Drill vertically, expand horizontally

“ - -
4 a Turing tax evasion
| ial Coll H
london Turing tax E FPGAs
- E Fetch-execute
Perf. | A Enrgy/f
E Alan Turing (1912-1954) (fi)rs) (ml::;) m%lynJ;ame B But since it doesn’t involve communication, it’s not the important thing
. . Intel (720x480 SD) 30 122 742 _
realised we could use digital |, (1280x720 5D) | 11 122 2023 E Registers
technology to implement any ASIC 30 8 4

computable function

B Proposed “universal”

computing device — B The “Turing Tax” is a term for the

overhead (performance, cost, or energy) of
universality in this sense

B a single device which,
with the right program,
can implement any
computable function
without further
configuration

B That is, the performance difference
between a special-purpose device and a
general-purpose one

B One of the fundamental questions of
computer architecture is to how to

B Because if we know the program'’s dataflow, we can use wires and

B Cache

B |If we know exactly when the reuse will occur, we can program
movement to and from local fast memory explicitly

Vectorisation
Message aggregation
Inspector-executor

Dependence, points-to, parallelization

latches to pass data from functional unit to functional unit

reduce the Turing Tax




Exhibition

|
- | Garderot
= Cloakrooi




“New IPCC at CERN Pushes Code Modernization”

InsideHPC
| n te | “CERN Modernizes Code with IPCC”
GOParallel

(lntel)
A long fruitful relation with Intel

O Treat energy deposits in cells as 3D image

° I ntel h as j u St fu N d ed our secon d . O Generator and Discriminator based on 3D convolutions [/ /

O Explored several “tips&fricks”

IPCC on a ML based tool for Fast | B

) . . the last step, LeakyRelu, no P ' ' z
hidden d | e LT, e e
Simulation in GeantV oot S . w

O Batch fraining

Some generated images

* We presented our first results on

GAN application to calorimeter B Firstresuls look very prommising! Tom
S|mUIat|On o Qu”oli’ro’rive results show no “E - -
collapse problem E 2:;_
* Meeting with several ML specialists e
e Study scaling on KNL cluster NG —
(MARCONI system @CINECA) L /) B B =

* Port our code to NEON framework



Cavium’s ThunderX2 (ARMv8 64-bit core)
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ARM & cavium

Leader in energy efficient processors, extending to the HPC environment
* Fujitsu Post-K to replace (#5 top500) computer-K at RIKEN supercomputer center in 2020

 Mont-Blanc phase3 Exascale project uses Cavium’s ThunderX2

Longer vector extensions to effectively provide massive computational throughput for HPC

Scalable Vector Extension (SVE: 128 to 2,048 bit) with vector-length-agnostic programming model

* Orthogonal to existing 128-bit Neon SIMD

New Cortex-A systems targeted to ML workloads
www.montblanc-project.eu

wwwarm,com MONTBLANC

EUROPEAN APPROACH TOWARDS ENERGY EFFICIENT HIGH PERFORMANCE




Predicate registers

| - FFR

PO

ARM SVE

P1

P2

ARM =

A “universal” vector extension

P15

<« >
32-b1t‘

<
«

n x 32-bit

Data Registers (SVE/NEON/VFP)

SO
DO
VO

Z0

Z1

Z2

S31
D31
V31

Z31

<
<

128-bit

A\ \4

A

veclen = n x 128-bit

e Supports vector-length agnostic (VLA) programming that adapts to available

vector length

predication, gather-load/scatter-load,..)

A unique challenge for software!

 Benchmark compiler vectorisation on GeantV code

Very interesting meeting with ARM senior engineers

e Test our 3dGAN network training on the new architectures

https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming

Introduces novel features to improve compiler vectorization (per-lane



INTEL" XEON PHI"™
PROCESSOR

HIGH PERFORMANCE
PROGRAMMING

[ ]
‘ aV| l I | I I ir 7 8T8 | Joenes Reinders | Avinash Sodani

& cavium

* A well know processors manufacturer

* We met Avinash Sodani, a former senior Intel engineer,
head of the KNL design team, now at Cavium

e Co-development of a custom accelerator targeted to
GeantV simulation workload
* Hardware acceleration for Machine Learning

* Further meetings to discuss GeantV code design (data layout and
processing flow) and the machine learning approach

http://www.cavium.com



HPC Redefined - Join the Al Revolution

1B

Simplified Development and Deployment

[[1ni] Z

<|||

 IBM to deliver new
hardware to CERN
(openlab)

Deploy open source deep Leverage a complete set of Al Deliver rapid deployment for
learning frameworks rapidly & development tools that fast time to value with a
experiment with optimized addresses every step of your comprehensive cluster stack
frameworks and tools Al pipeline . .

*Rapidly deploy a cluster in

*Nenlnv Caffe Tarch Theann « QSimnlified Al devalnnment with miniitec with Snactriim Clister

IBMPowerAl
=5 oM spectum Gonducor Get to work faster, better for HPC or Al workloads
- * Fast, Performant Al deployment: single command install
£ mutpatom oot » Complete developer workflow tools for DL or HPC
+ Rapid cluster deployment for fast time to value
FastiPerfarmantiAl Corzﬁlete de\lleiluoperL . Tapld cIu:terf
deployment workflow tools for D eployment for fast
or HPC time to value

Better System Design for Al: Flat and Fat

* Geath is part of the S822LC for HPC is engineered both flat
physics WG of the and fat 115GB/s 115GB/s -

- Data flows freely across system

Open POWER foundation - Nearly as broad from CPU: GPU
. as System Memory: CPU
(resp. Marilena) - Big pipes between GPUs on the
same socket Unified Memory Space up toa(1 B
* Proposal to fund a doctoral  pegigned for Al, Deep Leaming s S 3
student to work on GeantV * GPU:GPU communication N - 7] /
. . * Unified memory + CPU:GPU
Optl m ISatlon for POWEF NVLink carry data large deep 80 GB/s 80 GB/s
architectures leaming models

* Superior Tensorflow, Caffe
performance




THE CONVERGE

NVIDIA HPC & DEEP

@ TESLA P100

Pascal Architecture NVLink HBM2 Stacked Memory |}

[ gl |
-

Page Migration Engine

* NVIDIA is still leading e
t h e W a y O n D L h W Highest Compute Performance GPU Intergggarlgggl{t% Maximum Unifyingstl;r?;l\ggi l?a g\eemory in

e Demand for GPU Vi e
@ C E R N iS h | g h ' Al supercomputer-in-a-box

Simple Parallel Programming with
512 TB of Virtual Memory

Meeting to discuss collaboration on our new ML

NVLink Hybrid Cube Mesh
H Optimized Deep Learning Software Stack
project and GeantV deployment on GPU
7 TB SSD Deep Learning Cache
Dual 10GbE, Quad IB 100Gb

3RU - 3200W
Volta Architecture Improved NVLink & Volta MPS Improved SIMT Model Tensor Core
HBM2
-,

TESLA V100

120 Programmable
Most Productive GPU Efficient Bandwidth Inference Utilization New Algorithms TFLOPS Deep Learning




. TOP FOUR REASONS FOR ATTENDING
Conclusions

* ISCis a huge event bringing academia and industry together
* High level technical program including innovative applications in many
different fields
* Networking is one of the main reasons for attending ISC

* This edition was particularly useful for us
* Recognition of the work done
e Collaboration with experts
* Building collaboration Thanks!



