Temperature Estimates for the external LHC beam dumps (TDE)

M. Frankl, A. Lechner, C. Bracco, C. Wiesner On behalf of HL-LHC WP14 Acknowledgments to: C. Schwick, J. Boyd

> 7th HL-LHC Collaboration Meeting November 14th, 2017

> > < □ > < 同 > < 回 >

November 14th. 2017

1 / 27

Introduction

- Brief overview: TDE layout, beam energy deposition and beam parameter assumptions
- Comparison of temperature estimates for Run 2 and HL-LHC beams:
 - TDE core and up-/downstream windows
 - STD and BCMS beams
 - Regular sweeps and combinations of MKBH and/or MKBV failures
- Possible approach for HighLumi: Installation of 2 additional MKBHs
 - Peak temperatures in the core
 - Regular sweeps and 1/2 MKBH failures
 - Energy density in the stainless steel jacket
- MKB Retriggering: Temperature estimates for core and windows

(日)

Brief Overview

- 2 Comparison between Run2 and HL-LHC
- 3 Installation of 2 more MKBHs: Possible effects on TDE core and steel jacket
- MKB-Retriggering: Temperatures in core and windows
- 5 Summary and Conclusions
- 6 Backup

・ロト ・ 戸 ト ・ ヨ ト ・

TDE layout (core)

- Segmented core consisting of high- and low-density graphite absorbers
- Diameter of 70 cm and a total absorber length of ~7.6 m
- High-density absorber blocks consist of polycrystalline graphite
- Low-density graphite absorber made of 2 mm thick, flexible graphite sheets
- Graphite segments are shrink-fitted into a 12 mm thick stainless steel jacket

Beam Energy Deposition

BCMS beam, 2556 bunches (Run2)

Beam Parameters and Filling Schemes

Simulations were carried out assuming the following beam parameters:

	RUN 2 (6.5 TeV)	HL-LHC (7 TeV)
BCMS	l _b = 1.3 x 10 ¹¹ ppb	I _b = 2.0 x 10 ¹¹ ppb
	$\epsilon^n_{x,y}$ = 1.37 µm rad	ε ⁿ _{x,y} = 1.37 μm rad
STD	I _b = 1.3 x 10 ¹¹ ppb	l _b = 2.3 x 10 ¹¹ ppb
SID	ε ⁿ _{x,y} = 2.6 μm rad	ε ⁿ _{x,y} = 2.08 μm rad

Number of bunches and total beam intensities:

	RUN 2 (6.5 TeV)	HL-LHC (7 TeV)		
BCMS	2556 b	2604 b		
BCIVIS	$I_{tot} = 3.3 \times 10^{14} p^+$	$I_{tot} = 5.2 \times 10^{14} p^+$		
STD	2556 b	2748 b		
SID	$I_{tot} = 3.3 \times 10^{14} p^+$	l _{tot} = 6.3 x 10 ¹⁴ p ⁺		

(Simulations for Run 2 were performed using simulated MKB-waveforms assuming an upgrade of their capacitance (to be implemented in LS2). Nevertheless, the difference in the energy deposition calculations is only about 3% wrt present waveforms) $(\Box \Rightarrow d\Box \Rightarrow d\Box \Rightarrow d\Xi \Rightarrow d\Xi \Rightarrow d\Xi$

Brief Overview

2 Comparison between Run2 and HL-LHC

3 Installation of 2 more MKBHs: Possible effects on TDE core and steel jacket

MKB-Retriggering: Temperatures in core and windows

5 Summary and Conclusions

6) Backup

・ロト ・ 戸 ト ・ ヨ ト ・

Peak Temperatures in the TDE Upstream Window

- Window located ${\sim}10\,m$ upstream of the core and exposed to swept proton bunches
- Isolates dump transfer line vacuum from nitrogen atmosphere
- CfC for robustness reasons, leak tightness assured by a thin steel layer

	Thickness	Material	Density
#1	15 mm	CfC (SIGRABOND 1501G)	\sim 1.5 g/cm ³
#2	0.2 mm	Stainless steel (AISI 316L)	8 g/cm ³

- · Peak temperatures and stresses in the stainless steel foil more critical than in CfC
- BCMS-beam dumps are more critical in terms of energy deposition than STD-beam dumps due to their smaller transverse emittance. This holds true also for HighLumi, even though STD-beams will have a higher beam intensity.

6

83

HighLumi

active MKBV

5

57

67

84

4

62

67

85

Difference (in peak energy deposition)

%		# active MKBV						
		6	5	4				
КВН	4	+64	+60	+52				
ive N	3	+71	+66	+61				
# act	2	+66	+67	+66				

 \rightarrow Thermo-mechanical results presented in next talk (T. Polzin)

active MKBH

4 56

3 66

Peak temperatures in the TDE graphite core

active MKBH

4

3

• Peak temperatures calculated in the low-density graphite segment of the TDE

6

1650

1980

2500

°C		# active MKBV						
		6	5	4				
IKBH	4	1040	1080	1170				
ive M	3	1190	1240	1300				
# act	2	1480	1500	1570				

BCMS

STD

RUN 2

HighLumi # active MKBV

5

1670

2000

2540

4

1725

2050

2590

Difference (in peak energy deposition)

%		# active MKBV						
		6	5	4				
КВН	4	+79	+74	+64				
ive N	3	+89	+82	+76				
# act	2	+90	+90	+83				

°C		# a	active MKBV					
		6	5	4				
IKBH	4	1010	1040	1130				
ive N	3	1140	1190	1250				
# act	2	1420	1440	1510				

°C		# active MKBV						
		6	5	4				
IKBH	4	1860	1900	1960				
ive N	3	2240	2270	2330				
# act	2	2840	2890	2960				

%		# active MKBV							
		6	5	4					
ІКВН	4	+117	+113	+100					
ive N	3	+131	+121	+115					
# act	2	+133	+133	+125					

(日)

- \rightarrow Already the peak temperature of a nominal HL-beam dump is higher than in case of 2 MKBHs missing in Run2.
- → Thermo-mechanical behavior of the low-density core to be analyzed. However, comprehensive material characterization is missing up to now.

Peak temperatures in the TDE Downstream Window

- Downstream window located \sim 13 cm downstream of last high-density core segment •
- Exposed to longitudinal shower tail from TDE core

				Thickne	SS	M	ateria	al					D	ensi	ty			
			#1	10 mm		Ti	taniu	m Gr	rade 2 (AST	M B265)			4.	5 g/	cm ³			
			F	RUN 2					Hi	ghLum	i		D	Diff	erence	e (in pea	k energy	deposition
	°C		# a	active MK	BV	1	°C		# a	ctive Mł	KBV		%		# ac	tive M	KBV	
			6	5	4				6	5	4				6	5	4	
	КВН	4	90	95	100		KBH	4	150	155	170		IKBH	4	+92	+88	+80	
BCMS	tive N	3	100	105	115		ive M	3	180	185	195		ive M	3	+98	+94	+85	
	# act	2	120	130	140		# act	2	220	230	245		# act	2	+97	+91	+86	
	°C		# a	active MK	BV	1	°C		# a	ictive Mł	(BV		%		# ac	tive M	KBV	
			6	5	4				6	5	4				6	5	4	
STD	IKBH	4	90	90	100		IKBH	4	170	175	190		IKBH	4	+117	+113	+100	
0.5	ive N	3	100	105	115		ive N	3	200	210	220		ive N	3	+131	+121	+115	
	# act	2	120	130	140		# act	2	245	260	275		# act	2	+133	+133	+125	
\rightarrow	Th	nerr	no-mec	chanical	results	pres	sent	ted	in next	talk (T. Polzi	n)	1		. = .	1 = 1	-	200

M. Frankl (7th HL-LHC Collaboration Meeting)

Brief Overview

2 Comparison between Run2 and HL-LHC

3 Installation of 2 more MKBHs: Possible effects on TDE core and steel jacket

MKB-Retriggering: Temperatures in core and windows

5 Summary and Conclusions

6) Backup

・ロッ ・ 一 ・ ・ ・ ・

6MKBHs: Operation with reduced Voltage (66%)

- 66% of the possible kick strength for all of 6 MKBHs yield a total horizontal kick strength equal to 4 MKBH operated at 100%
- Deploying 6 MKBHs (@ 66%) instead of 4 MKBHs (@ 100%), the loss of one or more MKBHs is less severe:

Total Horizontal Kick Strength

	missing MKBHs					
	0	2				
MKB6V4H	100%	75%	50%			
MKB6V _{100%} 6H _{66%}	100%	83%	66%			

Peak Temperature (low-density TDE core)

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

°C	missing MKBHs				
	0	2			
MKB6V4H	1850	2240	2830		
MKB6V _{100%} 6H _{66%}	1860	2100	2420		
Difference	+10	-140	-410		

- \rightarrow In the (presumed) worst case of 2 MKBHs providing no kick, the remaining horizontal kick strength is 33 % higher
- \rightarrow In this case, the peak temperature would be $\sim 400\,^\circ C$ lower
- \rightarrow Reduced sensitivity due to MKBH failure

6 MKBHs: Additional Dilution

• 2 additional MKBHs also mean a 50% higher potential horizontal kick strength

100 %

Image: A math a math

6 MKBHs: Additional Dilution +10 %

• 2 additional MKBHs providing a 50% higher potential horizontal kick strength

110 %

(日)

6 MKBHs: Additional Dilution +20 %

• 2 additional MKBHs providing a 50% higher potential horizontal kick strength

120 %

▲□ ▶ ▲圖 ▶ ▲ 圖 ▶ .

6 MKBHs: Additional Dilution +30 %

• 2 additional MKBHs providing a 50% higher potential horizontal kick strength

130 %

(日)

6 MKBHs: Additional Dilution +40 %

• 2 additional MKBHs providing a 50% higher potential horizontal kick strength

140 %

▲□▶ ▲□▶ ▲ □▶ ▲

6 MKBHs: Additional Dilution +50 %

• 2 additional MKBHs providing a 50% higher potential horizontal kick strength

150 %

6 MKBHs: What about the Steel Jacket?

Peak energy density calculated in the stainless steel jacket:

Peak energy density in the tube at 150 % horizontal dilution would roughly double compared to 100 %.

Acceptable? \rightarrow Thermo-mechanical analysis required...

< □ > < 同 >

1 Brief Overview

- 2 Comparison between Run2 and HL-LHC
- 3 Installation of 2 more MKBHs: Possible effects on TDE core and steel jacket

MKB-Retriggering: Temperatures in core and windows

5 Summary and Conclusions

6) Backup

・ロト ・ 戸 ト ・ ヨ ト ・

MKB-Retriggering: Temperatures in Core and Windows

• Peak temperatures calculated depending on the time delay between the retriggering and the arriving abort gap

- Core: For all relevant time delays peak temperatures stay well below the temperature level in the scenario of a HL-STD beam dump missing the dilution of 2 MKBHs
- Windows: For most time delays the peak temperature is below the level of the case with 2 MKBHs missing. In upstream window at $t_{delay} = 14 \,\mu$ s, however, a significantly higher temperature is expected.
- ightarrow Thermo-mechanical responses to be analyzed
- \rightarrow Results for the upstream window presented in next talk (T. Polzin)

1 Brief Overview

- 2 Comparison between Run2 and HL-LHC
- 3 Installation of 2 more MKBHs: Possible effects on TDE core and steel jacket
- MKB-Retriggering: Temperatures in core and windows
- 5 Summary and Conclusions

6) Backup

・ロト ・ 戸 ト ・ ヨ ト ・

Summary & Conclusions

- For a regular HL-STD beam dump peak temperatures are already close to 2000°C in the low-density graphite core. In case of 2 MKBHs missing peak temperatures reach almost 3000°C with a corresponding risk of local damage.
- Possible approach: Installation of 2 additional MKBHs
 - 6 MKBHs operated at 66 % (= horizontal dilution of 4 MKBHs at 100 %):
 - Failure of 2 MKBHs would be less severe: 2420°C instead of 2830°C peak temperature in the low-density segment
 - 6 MKBHs operated at 100 % (= 150 % horizontal dilution wrt. now):
 - Horizontal dilution strength for the 2 MKBH failure case would correspond to a nominal sweep for 6 MKBHs operated at 66 %: 1860°C peak temperature
 - Peak temperature for a regular dump lower: 1440°C
 - Effects of higher energy density in the stainless steel jacket and downstream flange to be assessed
- MKB-Retriggering requires a more detailed thermo-mechanical analysis especially for specific time delays with a more pronounced peak energy deposition.
- Accuracy of temperature estimates
 - Error in energy deposition calculations estimated as $10\,\%$
 - Error due to assumed material properties (density, specific heat) 10-15 %

イロト イポト イヨト イヨト

Brief Overview

- 2 Comparison between Run2 and HL-LHC
- 3 Installation of 2 more MKBHs: Possible effects on TDE core and steel jacket
- MKB-Retriggering: Temperatures in core and windows
- 5 Summary and Conclusions

(日)

TDE location

Material composition of the TDE windows

Upstream window: \rightarrow exposed to swept proton bunches

- Located $\sim 10 \text{ m}$ upstream of TDE core
- Isolates dump transfer line vacuum from nitrogen atmosphere
- CfC for robustness reasons, leak tightness assured by a thin steel layer

	Thickness	Material	Density
#1	15 mm	CfC (R SIGRABOND 1501G)	${\sim}1.5{\rm g/cm^3}$
#2	0.2 mm	Stainless steel (AISI 316L)	$8\mathrm{g/cm^3}$

Downstream window: \rightarrow exposed to longitudinal shower tail from TDE core

Located ~13 cm downstream of last high-density core segment

	Thickness	Material				Density
#1	10 mm	Titanium B265)	Grade	2	(ASTM	$4.5\mathrm{g/cm^3}$

Specific Heat

- Calculation of a temperature increase based on the obtained distribution of the energy deposition
- Important: Taking into account the temperature dependency of the specific heat of graphite

