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Introduction

The cosmic-ray spectrum
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Almost a perfect power-law over 12
energy decades.

Evidence of the “knee” and “ankle”
features.

Observed at energy higher than terrestrial
laboratories.

Direct measurements versus air-cascade
reconstructions.

Composition:
~ 98% are nuclei
~ 87% protons
~ 12% He
~ 1% heavier nuclei
~ 2% are electrons
~ 0.1% are anti-matter particles (positrons and
antiprotons)
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Introduction

The grammage pillar
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From this plot it follows the more robust
evidence of diffusion so far:
X(E .
CTesc = 7(7) ~ 10%kpc > Galaxy size
NISMM
and it suggests that SN explosions can sustain
the galactic CR population:
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Introduction

The anisotropy puzzle
Di Sciascio & luppa, 2014
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Amplitude

» dipole amplitude
increases up to ~10 TeV
and then it decreases
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Introduction

Elemental spectra
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Introduction

PAMELA and AMS-02: The precision era

Adriani et al., Science, 2011; Aguilar et al., PRL, 2015
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PAMELA and AMS-02 measurements of proton and helium (x10) spectrum.
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The fundamentals of CR propagation

The interstellar turbulence

“The (second) Great Power-Law in the Sky” (Jokipii)
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Non-linear CR propagation

Turbulence is stirred by Supernovae at a
typical scale L ~ 10 — 100 pc

Fluctuations of velocity and magnetic field are
Alfvénic

They have a Kolmogorov k—5/3 spectrum
(density is a passive tracer so it has the same

spectrum: én. ~ 6B):
B 27773 (ﬁ) 5/3
T3 ko \ ko

B 2
W (k)dk = L >2(k)
BO
L and the level of turbulence is

where kg = L™

dk W(k) ~
ko

B = .1+ 0.01



The fundamentals of CR propagation

Charged particle in a turbulent field

» The turbulent field amplitude is a small fluctuation with respect to the
regular component

» Resonant interaction wave-particle: kpe. ~ 71 (p)

» It follows:
3x10%7 /ng cm? /s
e e
vrr 1 28 | 2 p 12
Dy = —— ~3x 10" cm~/s (—)
) = 5 W ey ~ 3 /s (Gevic

C. Evoli

Non-linear CR propagation



The fundamentals of CR propagation

The transport equation

1

transport

gain/sinks

(Dxx . ﬁNz - ﬁNz) = QSN + Qlosses + erag/decay

oN; S

Spatial diffusion: V - J = Q

Advection by Galactic winds/outflows: @ = u}’

Source term proportional to Galactic SN profile

Energy losses: ionization, Bremsstrahlung, IC, Synchrotron, ...

Production of light nuclei due to the inelastic scattering or the decay of
heavier species

vvyyyvyy
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The fundamentals of CR propagation

Predictions of the standard picture

For a primary CR species (e.g., H, C, O) at high energy we can ignore energy
gain/losses, and the transport equation can be simplified as:

0

~ Qo)+ o[PS ]

For z # 0 one has:

ON z
Dg = constant — N(z) = No (1 — E)

where we used the definition of a halo: N(z = £H) = 0.
The typical solution gives:
Qo(p) H —y—6

No(p) = 24, D(p)

For a secondary (e.g., Li, Be, B) the source term is proportional to the primary density:

Ng H _;

Qp ~ fitsmcocBNe —  — ~ —p
- No Do

where we use figsy = naiskh/H.
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The fundamentals of CR propagation

Comparison with B/C as measured by AMS-02

Aguilar et al., PRL, 2016
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The fundamentals of CR propagation

Predictions of the standard picture

» By solving the transport equation we obtain a featureless (at least up to
the knee) propagated spectrum for each primary species, at the odds
with observations.

» This result remains true even in more sophisticated approach as
GALPROP or USINE or DRAGON or PICARD (in order of appearance)

» What is missing in our physical picture?
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The fundamentals of CR propagation

Limits of standard approach: not-local observations
Yang, Aharonian, Evoli, PRD, 2016
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The one-zone model for transport implemented in most of the numerical
approaches fails in reproducing not-local observation as ~-ray diffuse and
anisotropy.
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The turbulent halo

The halo size H

» Assuming N(z = H) = 0 reflects the requirement of lack of diffusion
(infinite diffusion coefficient)

» May be because B — 0, or because turbulence vanishes (in both cases
D cannot be spatially constant!)

» Vanishing turbulence may reflect the lack of sources
» Can be H dependent on p?
» What is the physical meaning of H?
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The turbulent halo

The radio halo in external galaxies
Credit: MPIfR Bonn
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The turbulent halo

The ~-halo in our Galaxy
Tibaldo et al., 2015, ApJ
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» Using high-velocity clouds one can measure the emissivity per atom as
a function of z (proportional to N)

» Indication of a halo with H ~ few kpc
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CR self-generated turbulence

Non-linear cosmic ray transport
Skilling71, Wentzel74

» CR energy density is ~ 1 eV/cm™2 in equipartition with: starlight, turbulent gas
motions and magnetic fields.

» In these conditions, low energy can self-generate the turbulence for their
scattering (notice that self-generated waves are k ~ rp)

» Waves are amplified by CRs through streaming instability:

1672 va
3 kW(k)B2

Fon = o 5 |

and are damped by wave-wave interactions that lead the development of a
turbulent cascade (NLLD):
InLip = (2¢x) 3 2kva(kW)1/2

» What is the typical scale/energy up to which self-generated turbulence is
dominant?
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CR self-generated turbulence

Non-linear cosmic ray transport
Blasi, Amato & Serpico, PRL, 2012

Transition occurs at scale where external turbulence (e.g., from SNe) equals in energy
density the self-generated turbulence

Wext (ktr) = WCR(ktr)

where W¢g corresponds to I'cg = I'NLLD
Assumptions:

» Quasi-linear theory applies

» The external turbulence has a Kolmogorov spectrum
» Main source of damping is non-linear damping
>

Diffusion in external turbulence explains high-energy flux with SNR efficiency of
€~ 10%

R2 g3 3/2(vp—4)
By = 228GeV | 41073 B2 =5)/2(p—4)
' €0.1FE51R30 0,1
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CR self-generated turbulence

The turbulence evolution equation

ow _ o
ot Ok

ow 0
{DL TS } + EP (vaW) +TerW + Q(k)

» Diffusion in k-space damping: Dy, = ci|va |k ?W'/?
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CR self-generated turbulence

The turbulence evolution equation

ow 0 ow 0, .
o T ok [Dkkm] + 92 (vAW) +TerW + Q(k)

» Diffusion in k-space damping: Dyy = ci|va|k™/?W?/?

» Advection of the Alfvén waves
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CR self-generated turbulence

The turbulence evolution equation

ot ok

ow 9 ow
[D’“’“ ok

—] + 2 @aW) + TenlV + Q)

» Diffusion in k-space damping: Dyy = ci|va|k™/?W?/?
» Advection of the Alfvén waves

» Waves growt due to cosmic-ray streaming: I'cr o< ON/0z
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CR self-generated turbulence

The turbulence evolution equation

19144 1o} 19144
ot ok [D

0 i
kkm] + 9 (vaW) +TerW + Q(k)

Diffusion in k-space damping: Dy = cx|va|k™/?W'/2

>
» Advection of the Alfvén waves
» Waves growt due to cosmic-ray streaming: I'cr o« ON/0z
» External (e.g., SNe) source term Q ~ §(z)d(k — ko)
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CR self-generated turbulence

The turbulence evolution equation

ot ok

ow 9 ow
[D’“’“ ok

7] + % (vaW) +TerW + Q(k)

Diffusion in k-space damping: Dy = cx|va|k™/?W'/2

Advection of the Alfvén waves

External (e.g., SNe) source term @ ~ §(z)d(k — ko)

In the absence of the instability, it returns a kolmogorov spectrum:
W (k) ~ k3

>
>
» Waves growt due to cosmic-ray streaming: I'cr o« ON/0z
>
>
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CR self-generated turbulence

Non-linear cosmic ray transport: the turbulent halo

Evoli+2017, in preparation
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CR self-generated turbulence

Non-linear cosmic ray transport: a global picture

Evoli+2017, in preparation
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Turbulence spectrum without (dotted) and with (solid) CR self-generated waves at
different distance from the galactic plane.
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CR self-generated turbulence

Non-linear cosmic ray transport: a global picture

Evoli+2017, in preparation
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Pre-existing waves
(Kolmogorov) dominates
above the break

Self-generated turbulence
between 1-100 GeV

Voyager data are reproduced
with no additional breaks, but
due to advection with
self-generated waves

No H is assumed here
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Conclusions

The elephant in the glassware

In Fig: Cosmic rays with ~GeV energy propagating in the interstellar
turbulence. We assume that nothing is going to happen.
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Conclusions

Conclusions

» Recent findings by PAMELA and AMS-02 (breaks in the spectra of
primaries, B/C a la Kolmogorov, flat anti-protons, rising positron fraction)
are challenging the standard scenario of CR propagation.

» Non-linearities might play an essential role for propagation (as they do
for acceleration). They allow to reproduce local observables (primary
spectra) without ad hoc breaks.

» We present a non-linear model in which SNRs inject: a) turbulence at a
given scale with efficiency e, ~ 10™* and b) cosmic-rays with a single
power-law and ecr ~ 10~". The turbulent halo and the change of slope
at ~200 GV are obtained self-consistently.

» As a bonus, these models enable us a deeper understanding of the
interplay between CR, magnetic turbulence and ISM in our Galaxy.
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