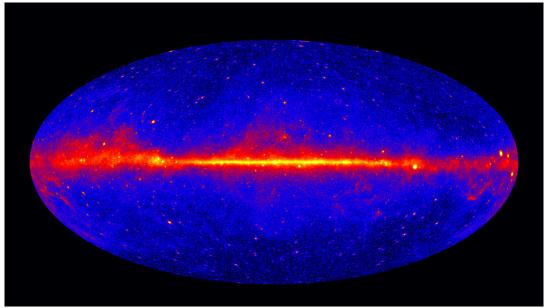
SkyFACT: Building better models of the gamma-ray sky

Emma Storm

In collaboration with:

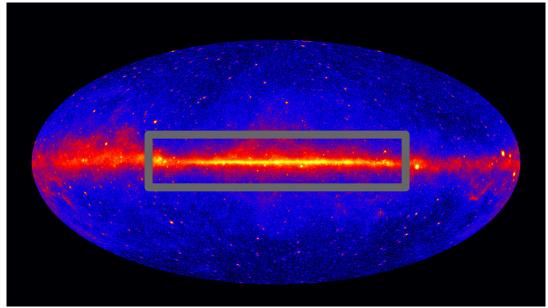
Richard Bartels, Francesca Calore, Christoph Weniger

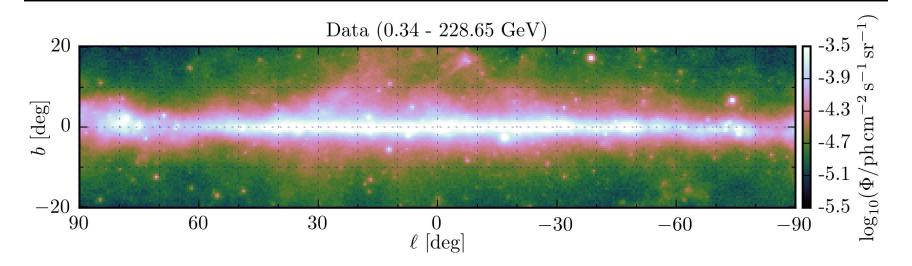
The Three Elephants in the Gamma-ray Sky 22 October 2017



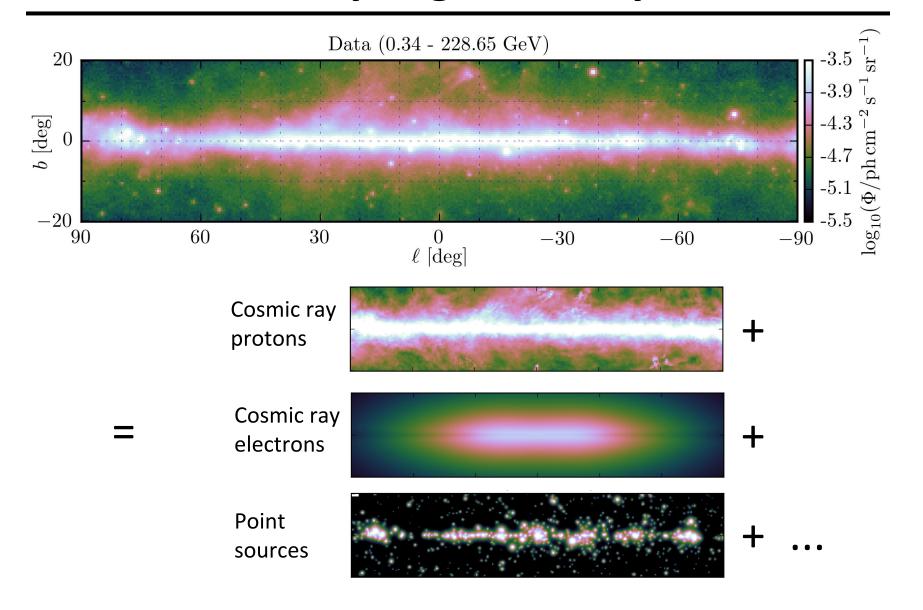
The gamma-ray sky

Fermi Gamma-ray Space Telescope

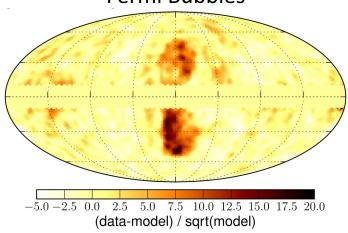



The gamma-ray sky

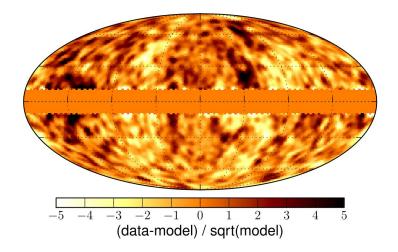
Fermi Gamma-ray Space Telescope



The inner Galaxy in gamma rays



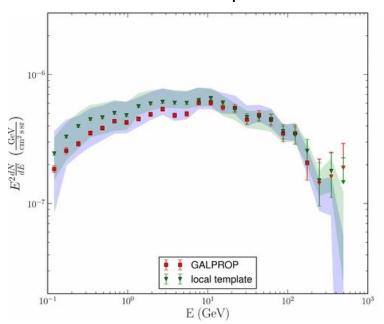
The inner Galaxy in gamma rays



Template fitting: a primer

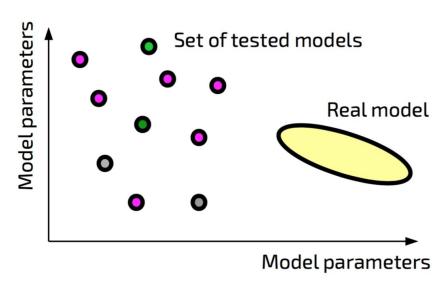
Discovery of new components: Fermi Bubbles

However: quality of fits remains poor



LAT Collaboration, 2014, ApJ 793:64

Template fitting: a primer

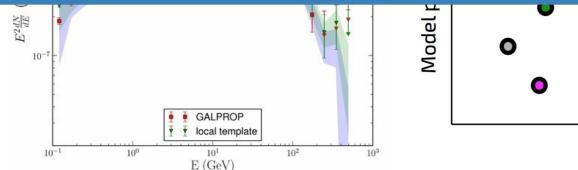

Model
$$\sim \sum_{k} \text{Template}^{(k)}(E) \cdot \sigma^{(k)}(E)$$

Fermi Bubbles Spectrum

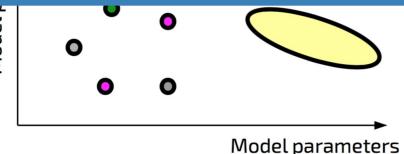
LAT Collaboration, 2014, ApJ 793:64

"Bracketing uncertainties"

Credit: C. Weniger


Template fitting: a primer

Model
$$\sim \sum_{k} \text{Template}^{(k)}(E) \cdot \sigma^{(k)}(E)$$


Fermi Bubbles Spectrum

"Bracketing uncertainties"

need models that fit the data solution: massively increase the parameter space

LAT Collaboration, 2014, ApJ 793:64

Credit: C. Weniger

A new approach: SkyFACT

Sky Factorization with Adaptive Constrained Templates

Model
$$\sim \sum_{k} \text{Template}^{(k)} \times \text{Spectrum}^{(k)}$$

A new approach: SkyFACT

Sky Factorization with Adaptive Constrained Templates

$$\phi_{pb} = \sum_{k} T_p^{(k)} \tau_p^{(k)} \cdot S_b^{(k)} \sigma_b^{(k)} \cdot \nu^{(k)}$$

Sky Factorization with Adaptive Constrained Templates

$$\phi_{pb} = \sum_{k} T_p^{(k)} \tau_p^{(k)} \cdot S_b^{(k)} \sigma_b^{(k)} \cdot \nu^{(k)}$$

p: spatial pixel

b: energy bin

k: model component

Spatial + spectral templates

Modulation parameters:

- Spatial
- Spectral
- overall

Sky Factorization with Adaptive Constrained Templates

$$\phi_{pb} = \sum_{k} T_p^{(k)} \tau_p^{(k)} \cdot S_b^{(k)} \sigma_b^{(k)} \cdot \nu^{(k)}$$

p: spatial pixel

b: energy bin

k: model component

Spatial + spectral templates

Normalizations per:

- pixel
- energy bin
- component

Sky Factorization with Adaptive Constrained Templates

$$\phi_{pb} = \sum_{k} T_p^{(k)} \tau_p^{(k)} \cdot S_b^{(k)} \sigma_b^{(k)} \cdot \nu^{(k)}$$

Number of free parameters~ number of pixels~**1e5**

- Need to prevent overfitting
- Borrow techniques from image reconstruction

Normalizations per:

- pixel
- energy bin
- component

Sky Factorization with **Adaptive**Constrained Templates

Penalization terms in the likelihood:

$$\ln \mathcal{L} = \ln \mathcal{L}_P + \ln \mathcal{L}_R$$

Poisson term Regularization of modulation parameters

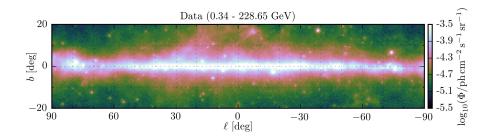
$$\tau_p^{(k)}, \sigma_b^{(k)}, \nu^{(k)}$$

Sky Factorization with **Adaptive Constrained Templates**

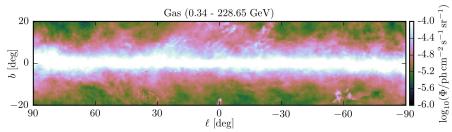
Penalization terms in the likelihood:

$$\ln \mathcal{L} = \ln \mathcal{L}_{P} + \ln \mathcal{L}_{R}$$

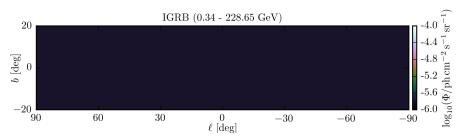
Regularization terms:

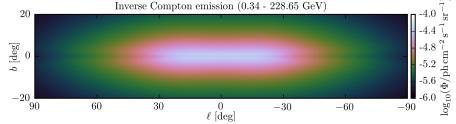

- Strength is controllable
- Typically, different for different components
- Regularization via
 MEM and smoothing

Regularization of modulation parameters

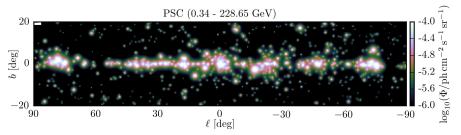

$$\tau_p^{(k)}, \sigma_b^{(k)}, \nu^{(k)}$$

Data and initial model




Model:

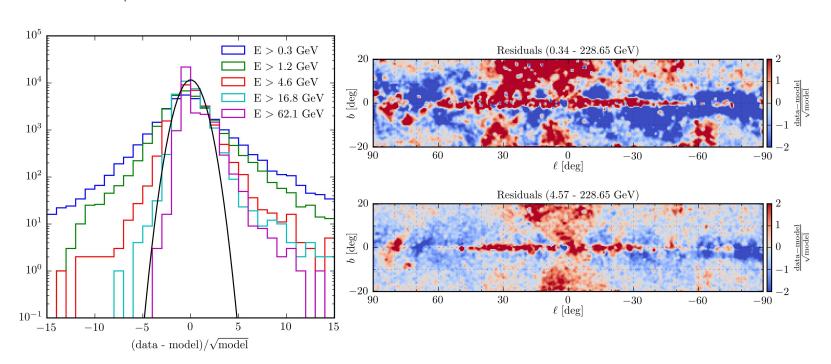
Template: sum of HI and H2 column densities from GALPROP; no dark gas correction Spectrum: Fermi-LAT (2012) ApJ 750


Spectrum: Fermi-LAT (2015) ApJ 799

Template: ISRF from GALPROP, propagation

with DRAGON

Spectrum: Fermi-LAT (2012) ApJ 750

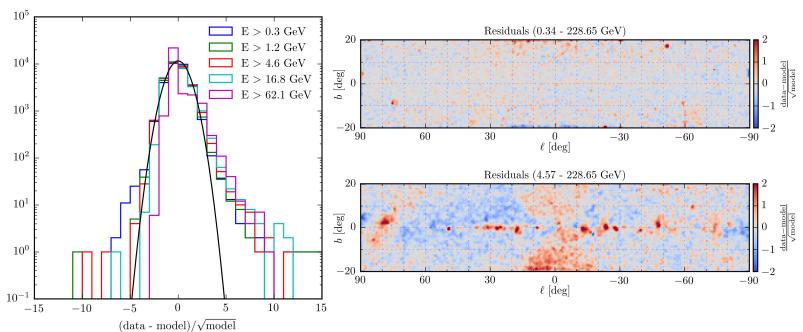

Locations and spectra: 3FGL catalog

SkyFACT vs the traditional approach

Fixed templates + constrained spectra

No spatial modulation allowed

25% variations allowed

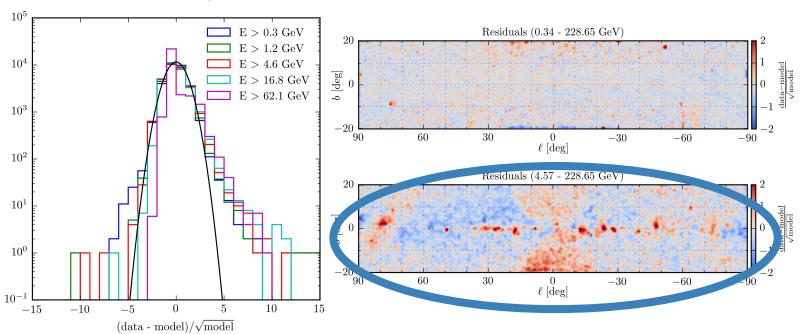

The traditional approach

SkyFACT vs the traditional approach

Constrained templates + spectra

Spatial modulation: 25% for gas, x2 for ICS

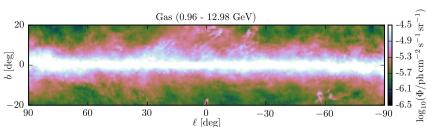
Spectral modulation: 20-25%

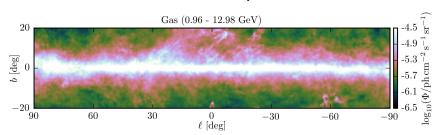

With adaptive template modulation

Additional necessary components

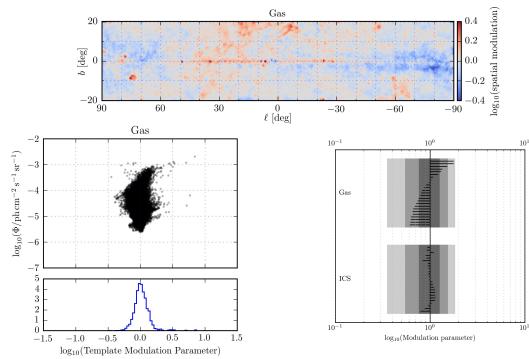
Constrained templates + spectra

Spatial modulation: 25% for gas, x2 for ICS

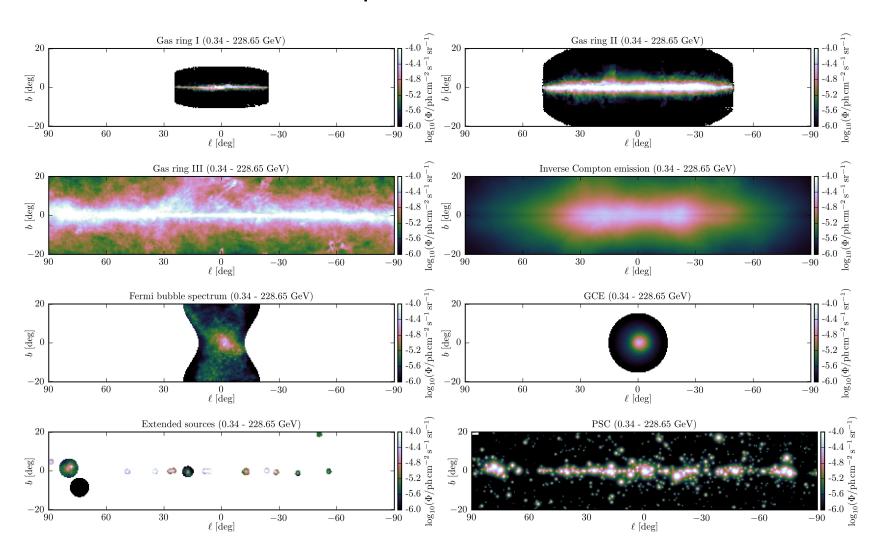

Spectral modulation: 20-25%


Irreducible residuals → add new components

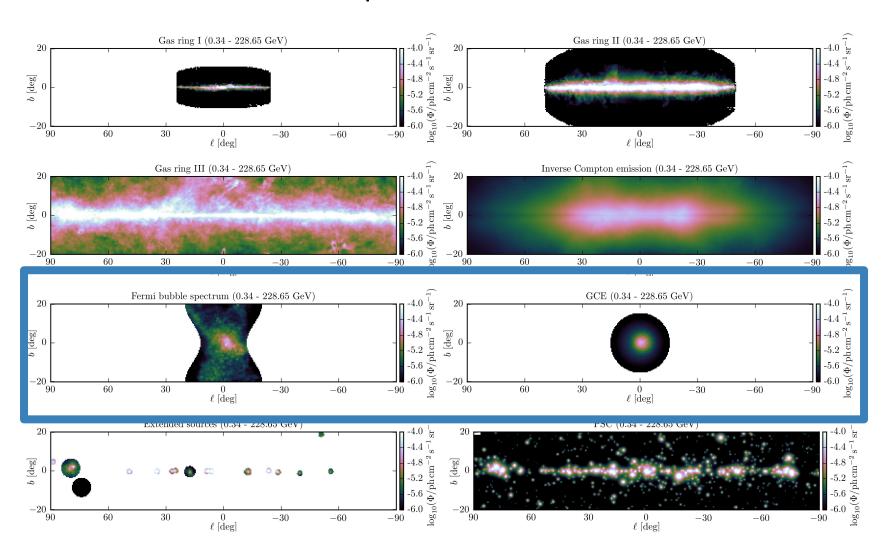
SkyFACT: modulation parameters



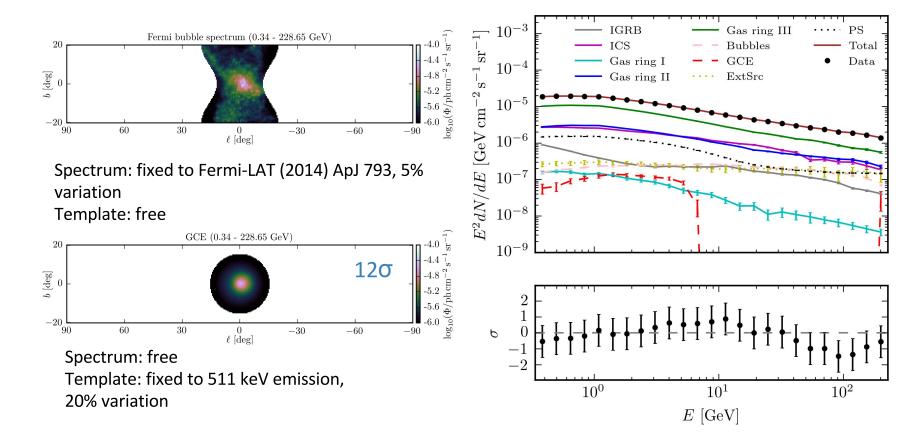
Best-fit Template



Template and Spectra Modulation

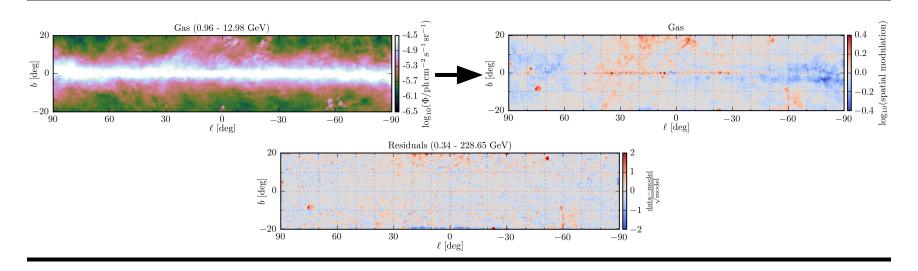

Reference model

Best-fit model components for reference model:



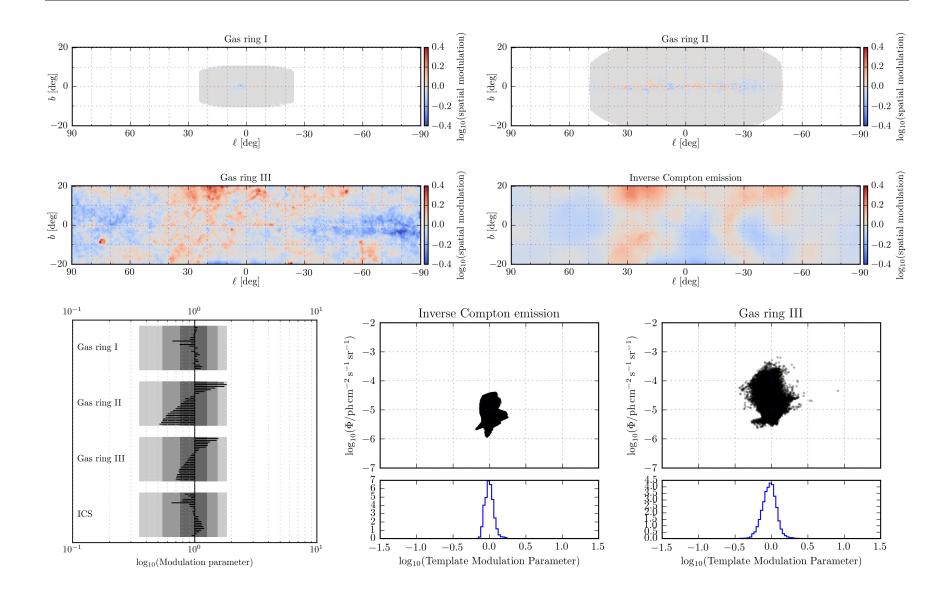
Application: bulge emission

Best-fit model components for reference model:


Application: bulge emission

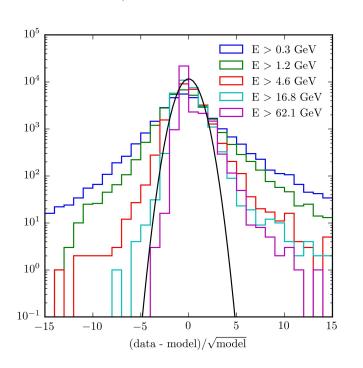
For future study:

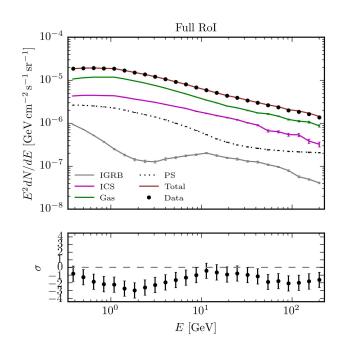
- Low latitude behavior of Fermi Bubbles
- Robust characterization of GCE -- see Richard's talk!


SkyFACT: summary

- Introducing nuisance parameters into template fits dramatically improves fit quality
- Modulation can account for intrinsic uncertainties in diffuse templates
- GCE spectrum recovered from input spatial template -- see Richard's talk tomorrow!

Backup slides

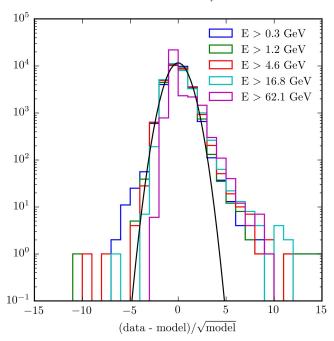

Reference model rescaling

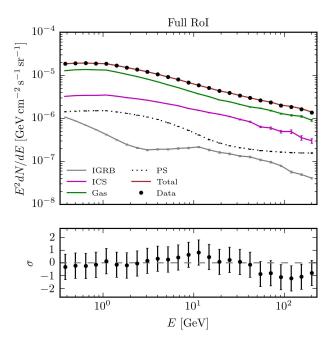

SkyFACT vs the traditional approach

Fixed templates + constrained spectra

No spatial modulation allowed

25% variations allowed

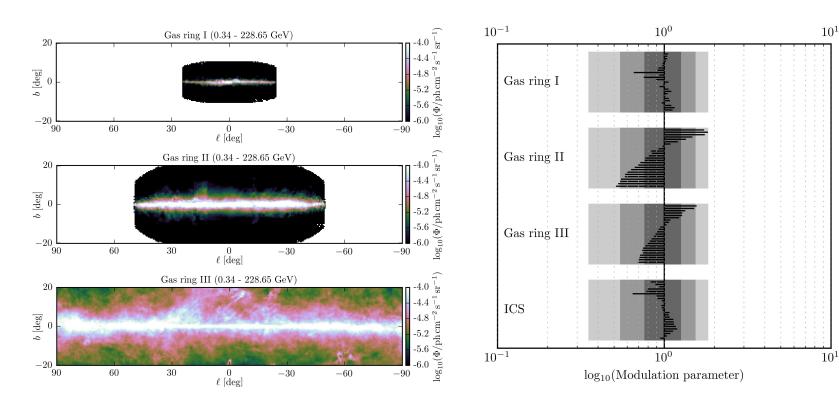

The traditional approach


SkyFACT vs the traditional approach

Constrained templates + spectra

Spatial modulation: 25% for gas, x2 for ICS

Spectral modulation: 20-25%



With adaptive template modulation

Application: CR proton gradient

Does the cosmic ray proton spectrum get harder closer to the Galactic Center?

With: Mart Pothast, Daniele Gaggero

SkyFACT: likelihood + regularization

Poisson Likelihood:
$$\ln \mathcal{L}_{P} = \sum_{pb} c_{pb} - \mu_{pb} + c_{pb} \ln \frac{\mu_{pb}}{c_{pb}}$$

Regularization Likelihood Terms:

$$-2 \ln \mathcal{L}_R = \sum_k \lambda_k \mathcal{R}_X(\tau^{(k)}) + \lambda_k' \mathcal{R}_X(\sigma^{(k)}) + \lambda_k'' \mathcal{R}_X(\nu^{(k)}) + \eta_k \mathcal{S}_1(\tau^{(k)}) + \eta_k' \mathcal{S}_2(\sigma^{(k)})$$
$$+ \sum_s \lambda_s' \mathcal{R}_X(\sigma^{(s)}) + \lambda_s'' \mathcal{R}_X(\nu^{(s)}) + \eta_s' \mathcal{S}_2(\sigma^{(s)})$$

Regularization Definitions

$$\lambda \mathcal{R}_{MEM}(x) = 2\lambda \sum_{i} 1 - x_i + x_i \ln x_i$$

$$\eta \mathcal{S}_1(x) = \eta \sum_{(n, n') \in \mathcal{N}} (\ln x_p - \ln x_{p'})^2 \qquad \eta \mathcal{S}_2(x) = \eta \sum_{b} (\ln x_{b-1} - 2\ln x_b + \ln x_{b+1})^2$$

SkyFACT: model

Model Definition

$$\theta \equiv (\tau^{(k)}, \sigma^{(k)}, \nu^{(k)}, \sigma^{(s)}, \nu^{(s)})^T \qquad \phi^D \equiv (\phi_{bp})$$
$$(\phi^D)_i = (A^{(1)}\theta)_i (A^{(2)}\theta)_i (A^{(3)}\theta)$$

A1,A2,A3 = spatial, spectral, normalization Big sparse matrices

Expected counts

$$\mu^D = \sum_{j} P_{ij}(\phi^D)_j(E)_j$$

SkyFACT: statistics definitions

Naively:

$$N_{\rm data} = N_{\rm pix} \times N_{\rm ebin} = 360 \times 81 \times 25 = 729000$$

 $N_{\rm DOF} = N_{\rm data} - N_{\rm param}$

But: non-gaussianity, regularization constraints, parameter degeneracies:

$$N_{\text{data}}^{\text{eff}} \equiv \langle -2 \ln \mathcal{L}_P(\theta) \rangle_{\mathcal{D}(\theta)}$$

$$N_{\text{DOF}}^{\text{eff}} \sim \langle -2 \ln \mathcal{L}_P \rangle_{\text{mock}}$$

SkyFACT: statistics table

Components	Run1	Run2	Run3	Run4	Run5
	Regularization hyper-parameters: $\begin{bmatrix} \lambda & \lambda' & \lambda'' \\ \eta & \eta' & \cdot \end{bmatrix}$				
IGRB	$\left[\begin{smallmatrix} \infty & 16 & \infty \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} \infty & 16 & \infty \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} \infty & 16 & \infty \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} \infty & 16 & \infty \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} \infty & 16 & \infty \\ 0 & 0 & \cdot \end{smallmatrix} \right]$
3FGL PSC	$\left[\begin{smallmatrix} \cdot & 25 & 0 \\ \cdot & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} \cdot & 25 & 0 \\ \cdot & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} \cdot & 25 & 0 \\ \cdot & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} \cdot & 25 & 0 \\ \cdot & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} \cdot & 25 & 0 \\ \cdot & 0 & \cdot \end{smallmatrix}\right]$
Gas (0-19 kpc)	$\left[\begin{smallmatrix} \infty & 16 & 0 \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 10 & 16 & 0 \\ 25 & 0 & \cdot \end{smallmatrix} \right]$	_	_	_
Gas ring I $(0-3.5\mathrm{kpc})$	_	_	$\left[\begin{smallmatrix} 10 & 16 & 0 \\ 25 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 10 & 16 & 0 \\ 25 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix}10&16&0\\25&0&\cdot\end{smallmatrix}\right]$
Gas ring II $(3.5-6.5\mathrm{kpc})$	—	_	$\left[\begin{smallmatrix} 10 & 16 & 0 \\ 25 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix}10&16&0\\25&0&\cdot\end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 10 & 16 & 0 \\ 25 & 0 & \cdot \end{smallmatrix} \right]$
Gas ring III $(6.5-19\mathrm{kpc})$	_	<u></u> 0	$\left[\begin{smallmatrix} 4 & 16 & 0 \\ 25 & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 4 & 16 & 0 \\ 25 & 0 & \cdot \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 4 & 16 & 0 \\ 25 & 0 & \cdot \end{smallmatrix}\right]$
Extended sources	_	_	_	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 4 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 1 & \infty \\ 4 & 0 & \cdot \end{smallmatrix} \right]$
Inverse Compton	$\left[\begin{smallmatrix} \infty & 16 & 0 \\ 0 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix}1&16&0\\100&0&\cdot\end{smallmatrix}\right]$	$\left[\begin{smallmatrix}1&16&0\\100&0&\cdot\end{smallmatrix}\right]$	$\left[\begin{smallmatrix}1&16&0\\100&0&\cdot\end{smallmatrix}\right]$	$\left[\begin{smallmatrix}1&16&0\\100&0&\cdot\end{smallmatrix}\right]$
Fermi bubbles	_	_	_	$\left[\begin{smallmatrix} 0 & 400 & \infty \\ 4 & 0 & \cdot \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & 400 & \infty \\ 4 & 0 & \cdot \end{smallmatrix} \right]$
511 keV template	_	_	_	_	$\left[\begin{smallmatrix} 25 & 0 & \infty \\ 0 & 0 & \cdot \end{smallmatrix} \right]$
Naive model parameters, $N_{\rm param}$	20253	78573	97838	104596	107639
Naive DOF	708747	650427	631162	624404	621361
Eff. model parameters, $N_{ m param}^{ m eff}$	1900	11800	10200	12700	12800
Eff. data bins, $N_{\rm data}^{\rm eff}$	624700	622700	620200	618800	619000
Eff. DOF, k	622800	610900	610000	606100	606200
$-2 \ln \mathcal{L}_P$	1016041	637742	633334	627206	626998
$-2\ln\mathcal{L}_R$	14152	24652	23709	21640	20988
Model fidelity, \mathcal{F}	627	164	153	145	144