

netherlands

ANALYSING Y-RAYS OF THE GALACTIC CENTER WITH DEEP LEARNING

LUC HENDRIKS RADBOUD UNIVERSITY NIJMEGEN

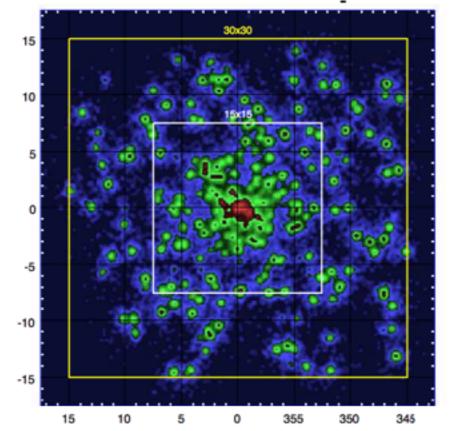
OUTLINE

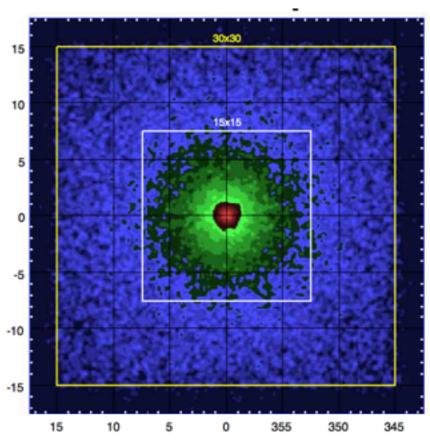
- Introduction
- Deep learning & ConvNets
- Analysing **y**-rays using deep learning
- Conclusions + outlook
- Together with:
 - Sascha Caron
 - Germán Gómez-Vargas
 - Roberto Ruiz de Austri
- Arxiv: 1708.06706

INTRODUCTION

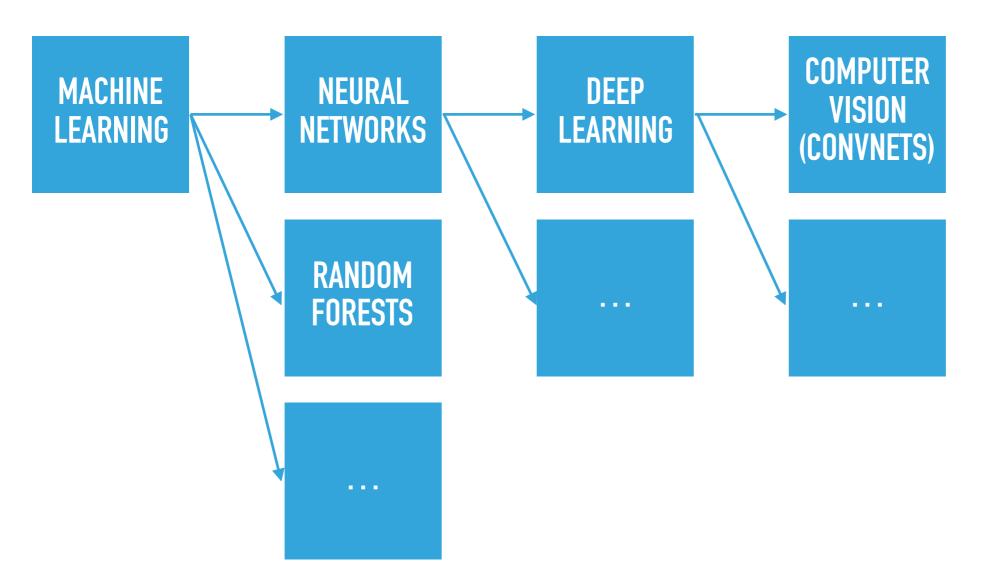
- Is the GC excess from a diffuse source or collection of unresolved point sources?
- Can we answer this question with deep learning?
- Assume diffuse

 and point source
 component
 distributed by
 gNFW profile





WHAT IS DEEP LEARNING?

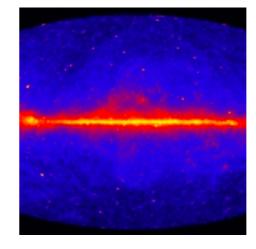


Instead of the programmer defining what the computer should do, supply an objective and learn from data

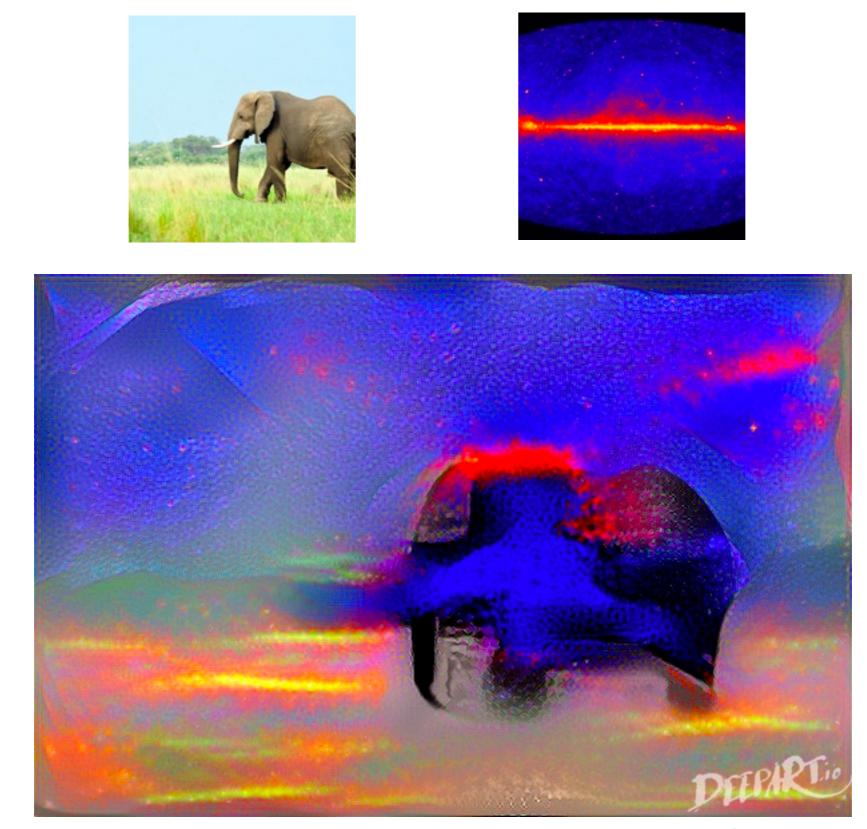
WHAT CAN YOU DO WITH DEEP LEARNING?

- Classification & regression
- ► Face detection, galaxy classification, ...
- Other cools things like:
 - Create the best Go player
 - Generate music
 - Make photo books
 - Style transfer
 - Generate music

INTRODUCTION DEEP LEARNING & CONVENTS

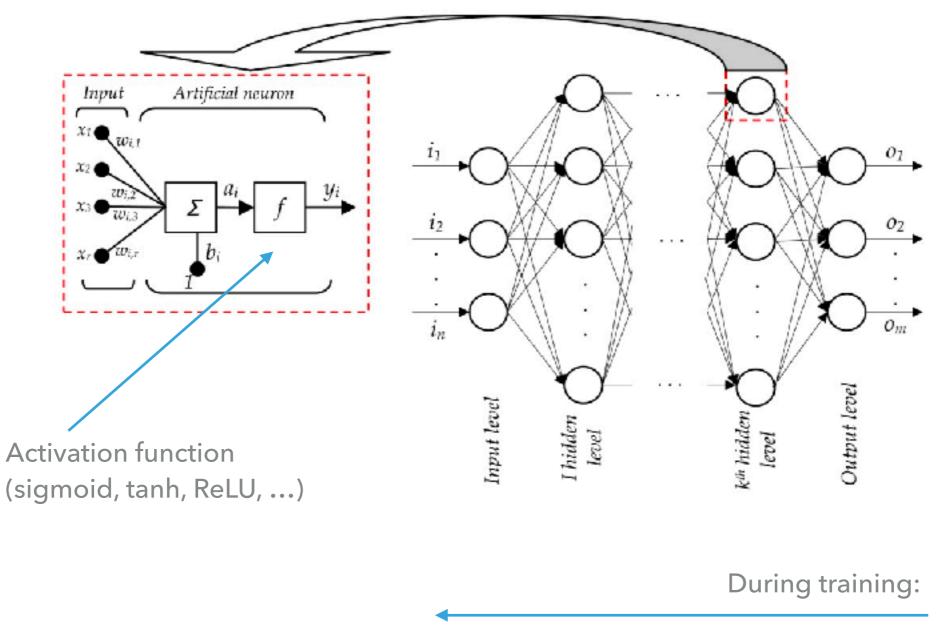


INTRODUCTION DEEP LEARNING & CONVENTS



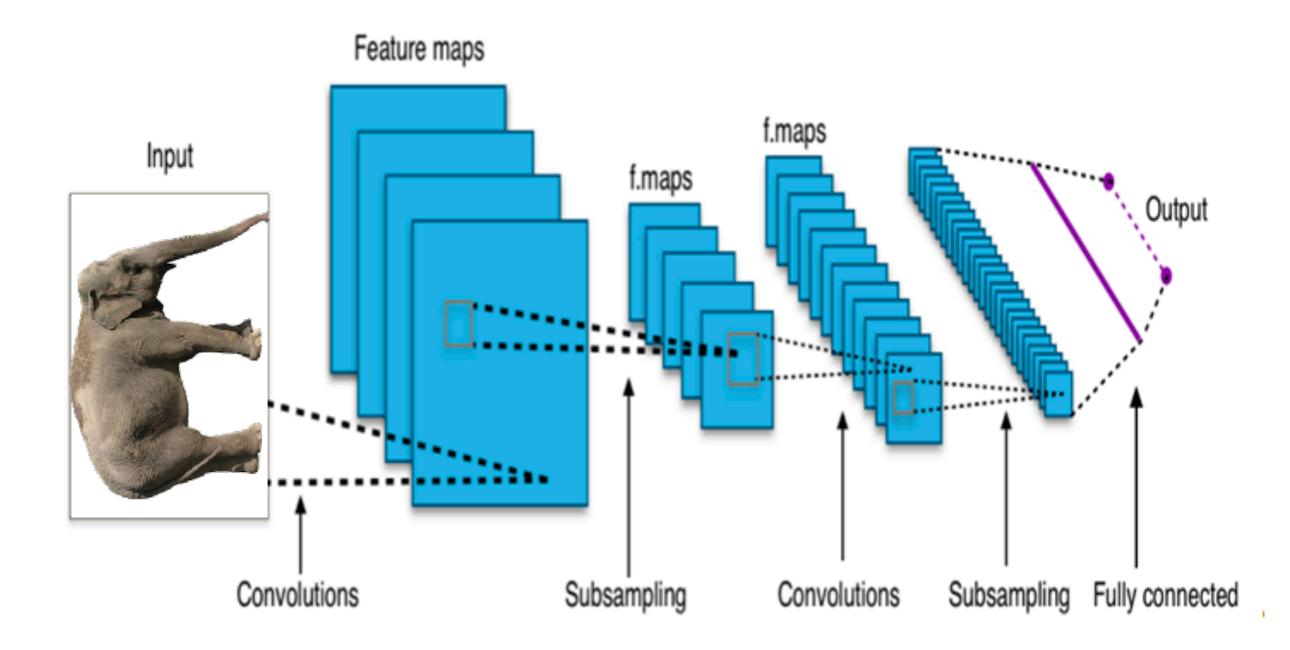
deepart.io

NEURAL NETWORKS & DEEP LEARNING



Backpropagate error & update weights using gradient descent

CONVOLUTIONAL NEURAL NETWORKS



Output:

. . .

Elephant: 0.97 Grass: 0.01 Dog: 0.0001

Pros:

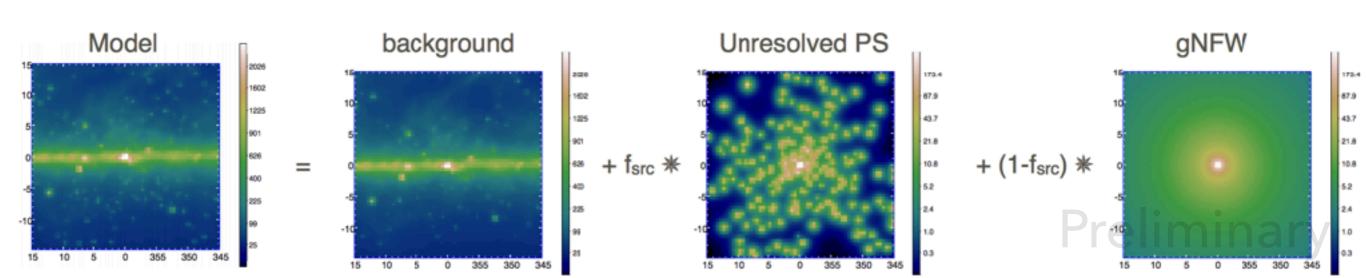
- Only define data and output, no human assumptions in algorithm
- NNs are universal approximators
- Cons:
 - They are black boxes
 - Training a ConvNet is still an "art"

HOW TO APPLY THIS TO Y-RAY DATA?

▶ Goal: determine the component of point sources vs diffuse source of the GC excess – f_{src}

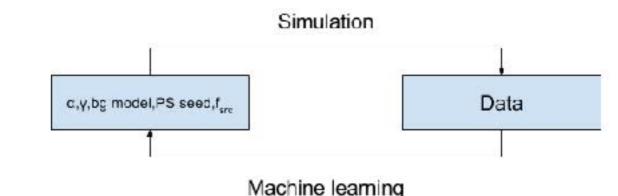
- Simulate GC using Fermi tools (5 parameters)
 - Output is photon count map of photons between 1-6GeV (no spectrum information, will be improved in new version)
- Sample from simulations in 5D parameter space
- > Train network to predict f_{src} accurately in all scenarios of the other components
- > Apply on real data sample big enough so that reality is somewhere in 5D space
- Network trained on simulated data to predict f_{src} simulation inversion

GC Excess



HOW TO APPLY THIS TO Y-RAY DATA?

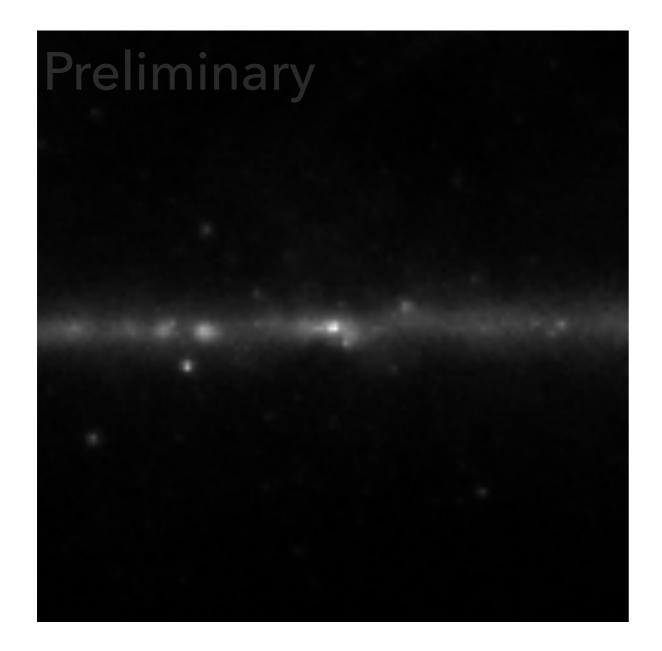
- 5 parameters are:
 - ► The fraction of diffuse vs point sources f_{src}
 - Point source flux distribution a $\frac{dN_{src}}{ds} = As^{\alpha}$
 - The value of γ in the gNFW profile 1.1
 - The background model used (3 for train, 2 for testing)
 - The randomised locations of the point sources
- Using simulation go from parameters to image
- Using ConvNets from image to parameters

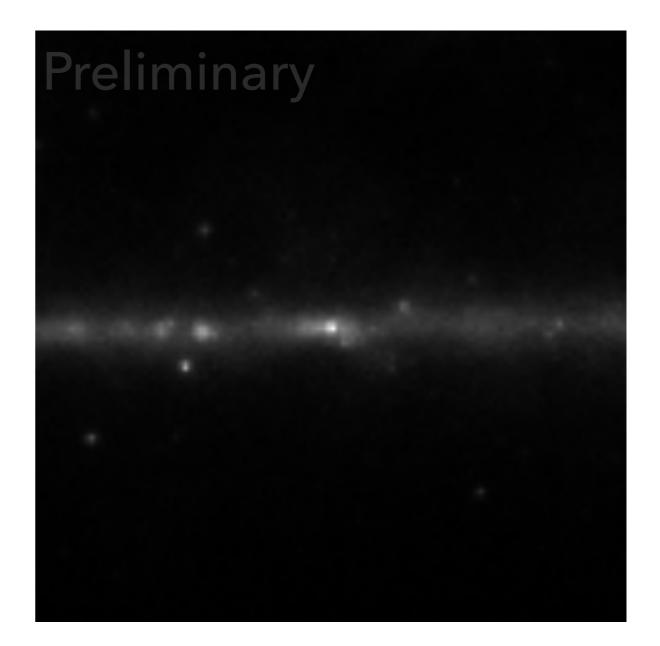


Determined by total excess

ANALYSING **Y**-RAYS USING DEEP LEARNING

EXAMPLE OF TWO SIMULATIONS





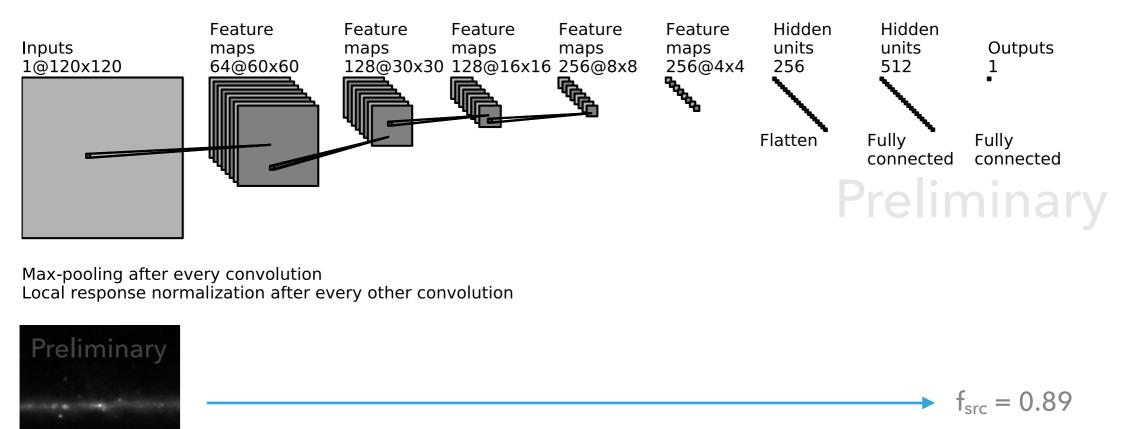
 $f_{src} = 0.9883$

$$f_{src} = 0.0275$$

Try yourself! http://fermiai.s3-website-eu-west-1.amazonaws.com/

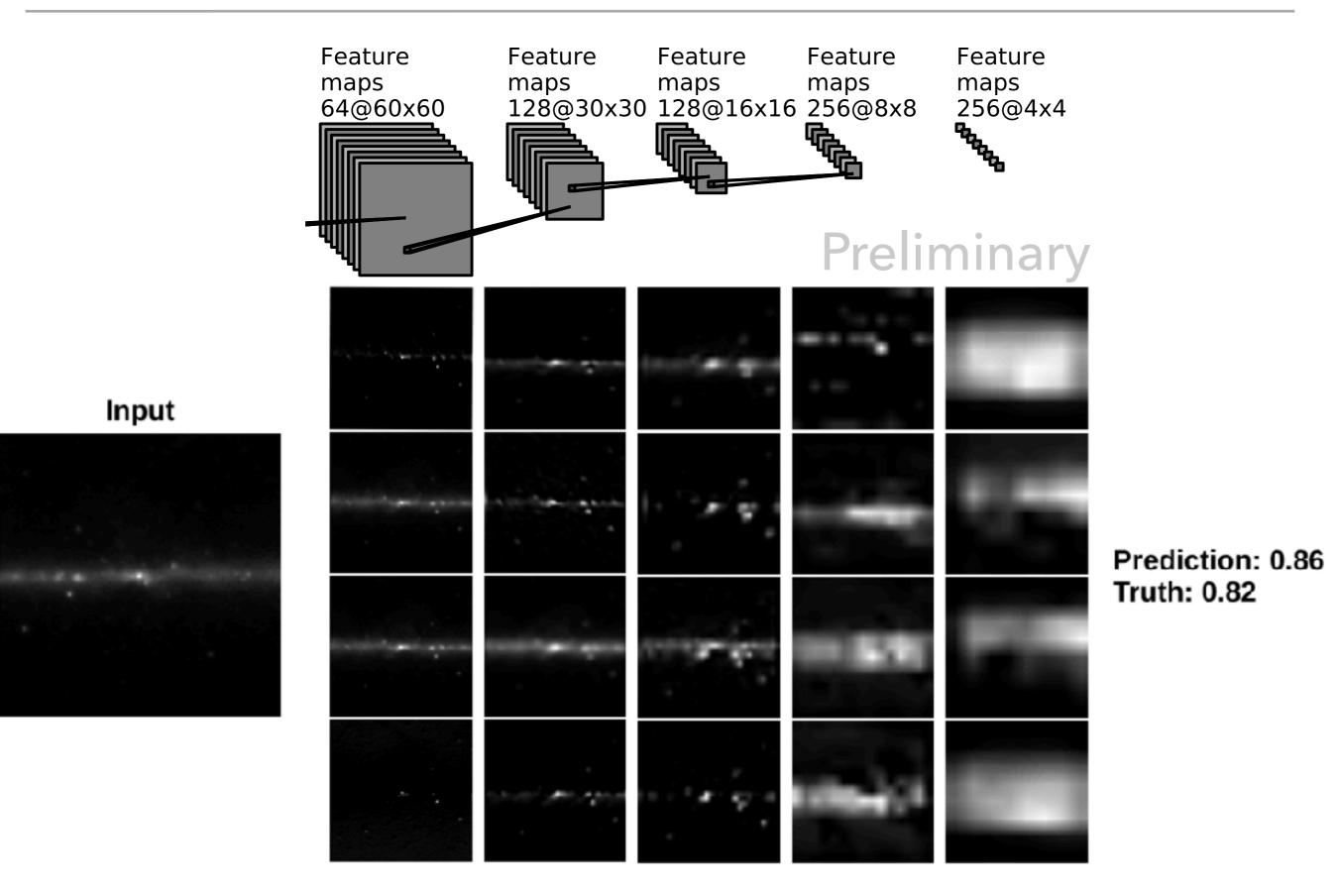
CONVOLUTIONAL NEURAL NETWORK

CONVOLUTIONAL NEURAL NETWORK



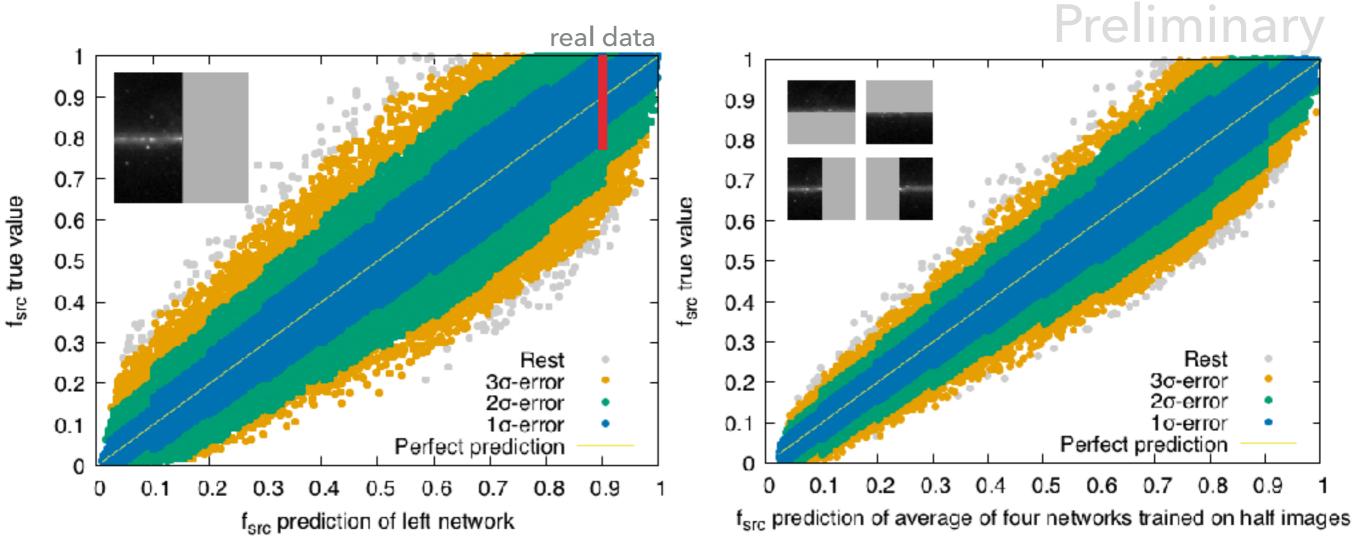
- Every layer has L2 regularisation (penalise high weights to prevent overfitting)
- 1.2 million images of 120x120 values
 ~10 million internal parameters
 1 day to train each network (TensorFlow, 2x GTX1080, >5000 cores, ~16 TFLOPs)

A LOOK INSIDE THE NETWORK



RESULTS

- Train using 3 background models, test on 2 others
- Test data: 2x30000 test points



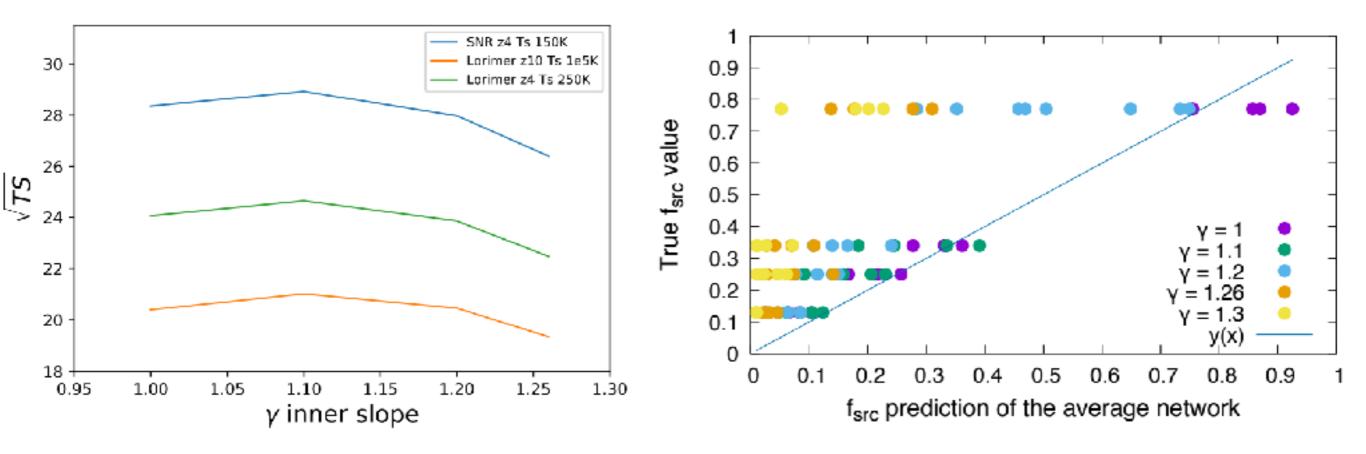
Because we are doing a followup study, real result is only evaluated on the left network to not bias ourselves

CONCLUSIONS + OUTLOOK

- Network successfully generalised over all training parameters
 - Utilise research by Google, Facebook, OpenAI, etc...
 - Applicable to many other problems as well regression & classification
- Strongly disfavours 100% diffuse (in agreement with other studies)
 - Give a prediction of actual mixture
- Followup study needed, improvements necessary in data generation
 - Use updated catalog (now 3FGL was used with pass 8 data. Does not include all sources)
 - Extend range of a from [-1.05, 1.05] to [-1.2, 1.2]
 - Allow for different γ values
 - Use multiple energy bins in the input data (now only 1 bin with 1-6 GeV)

BACKUP SLIDES

GAMMA DEPENDENCE



TEXT

BG MODELS USED

Usage	CR distribution	Halo height	T_S (K)	$\mathrm{Log}\mathcal{L}$	$\langle \sigma v angle imes 10^{-27} \ { m cm}^3/{ m s}$
		$z \ (\mathrm{kpc})$			
Training A	SNR	10	150	-442855	45.59
Training B	Lorimer	10	1×10^5	-442304	33.61
Training C	Lorimer	4	150	-442357	39.32
Testing A	Lorimer	10	150	-442539	39.63
Testing B	SNR	4	1×10^{5}	-442664	42.67

SUSY DM – SIGMA SD

